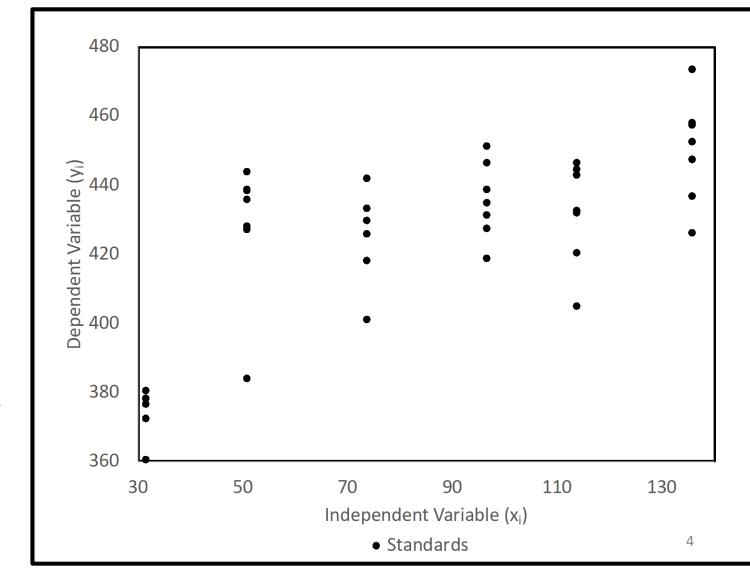
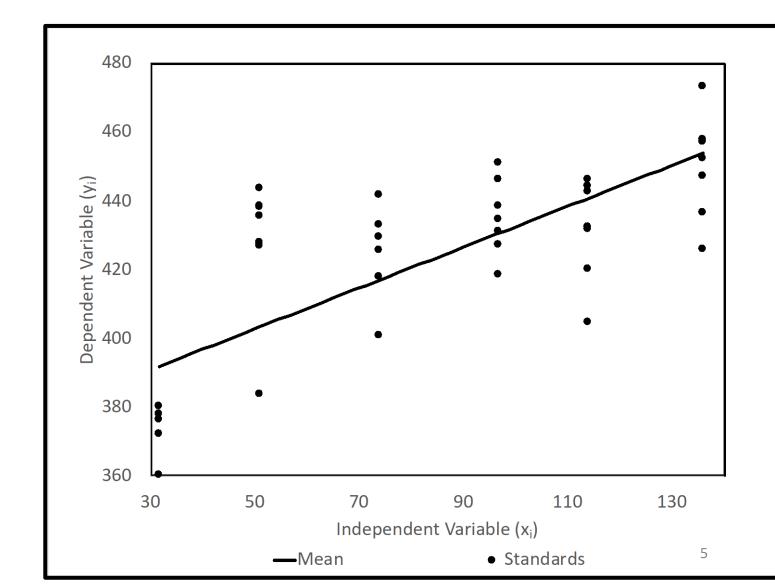

The Calibration Curve Problem

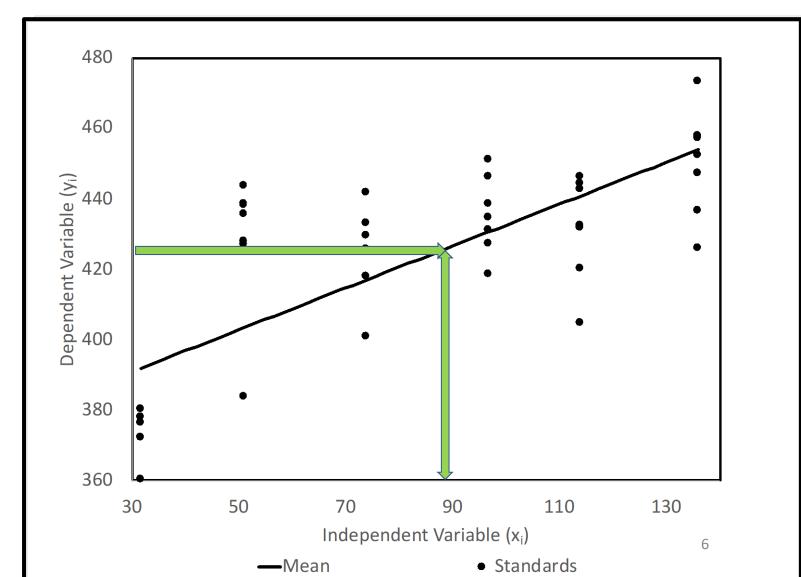
- Also called the standard curve problem
- Method to quantitate composition of unknown or test samples
- Compare standards to test samples
- Regress results from standards



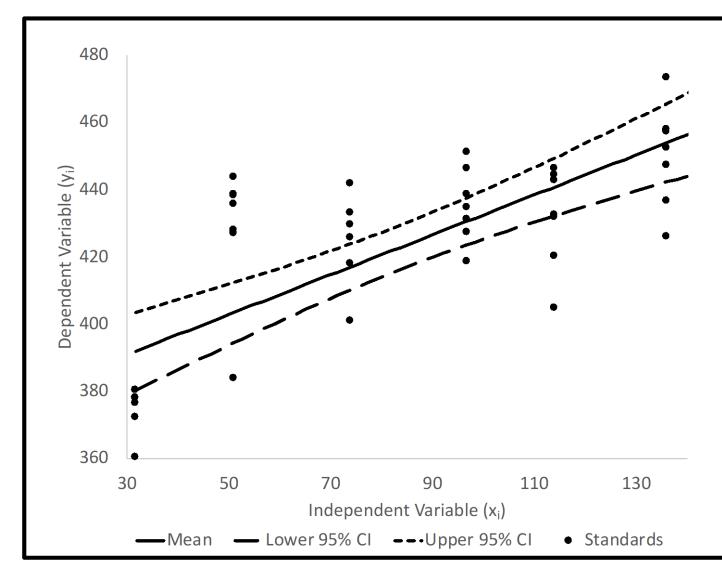
The Calibration Curve Problem


- Also called the standard curve problem
- Method to quantitate composition of unknown or test samples
- Compare standards to test samples
- Regress results from standards
- Predict "x" from results of test samples "y"

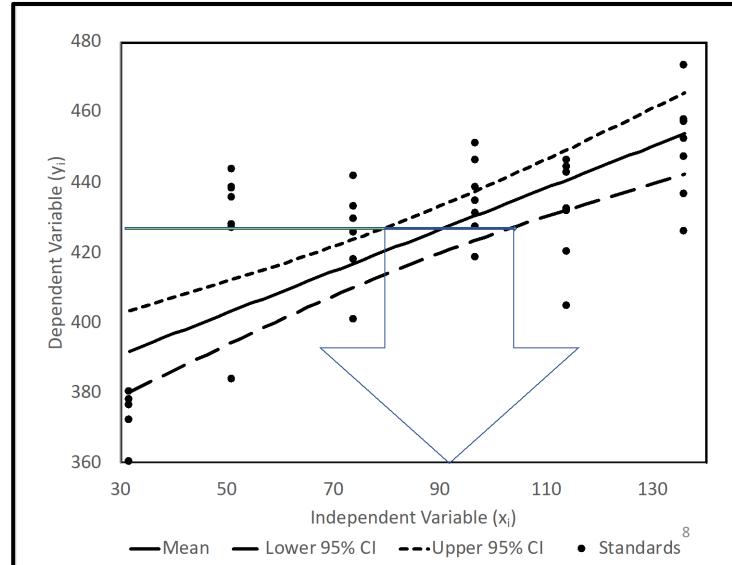
- Begin by finding the responses of the dependent variable to the independent variable
- Dependent variable
 - Standards from some known source
 - Measured properties or values

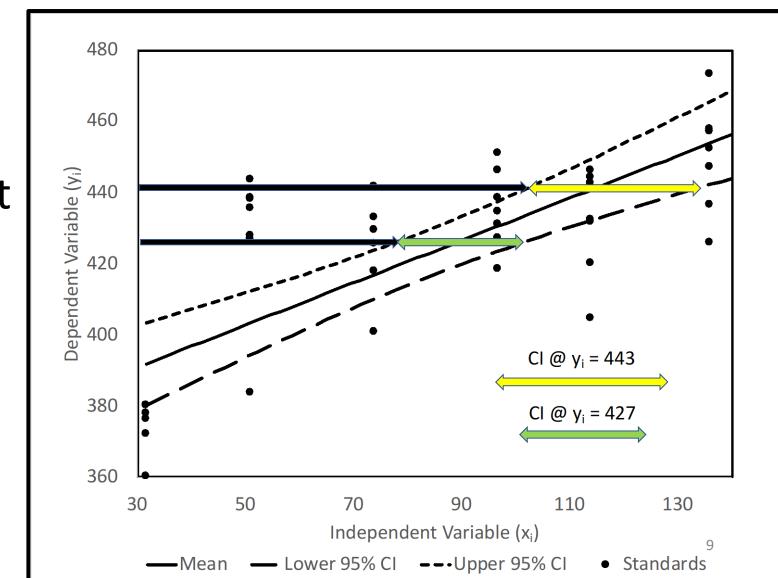


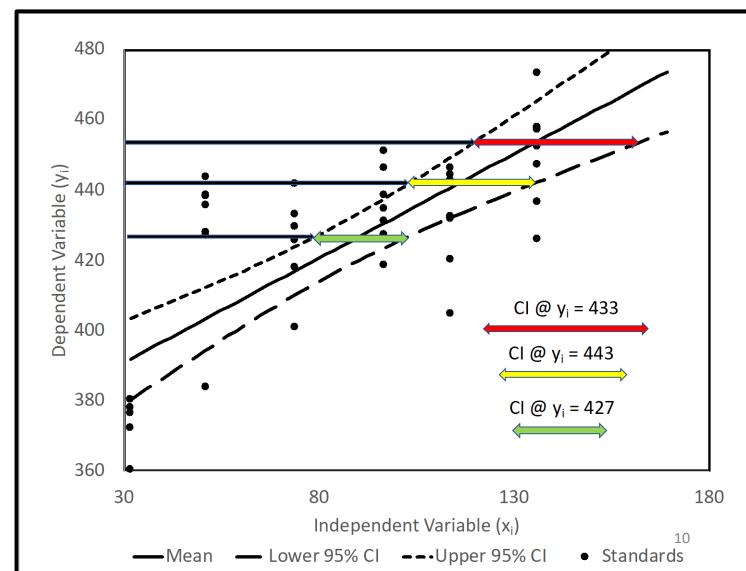
- Then fit a calibration, or standard curve
- By convention:
 - $Y_i = b_1 x_i + b_0$

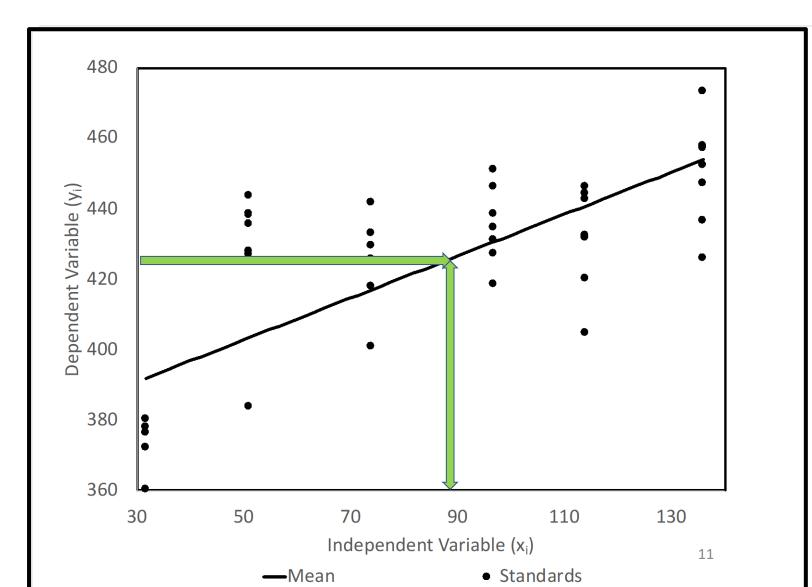


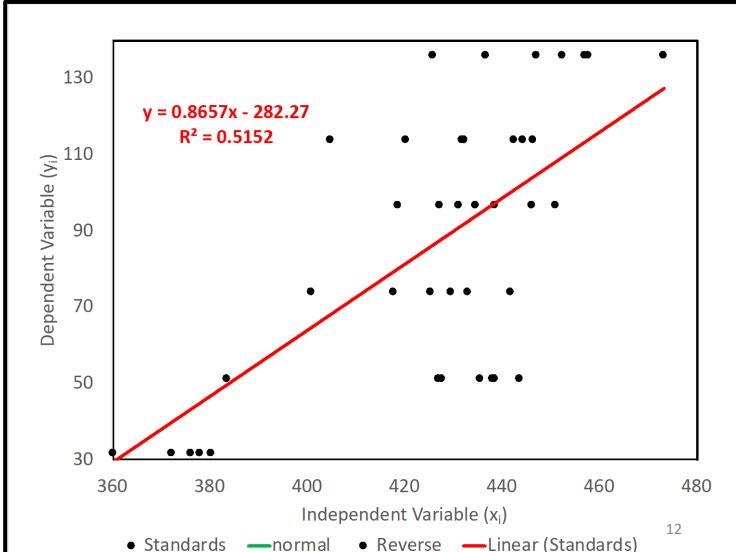
- Next measure the response of a test sample of unknown composition
- Calculate it's independent variable (x₀) composition

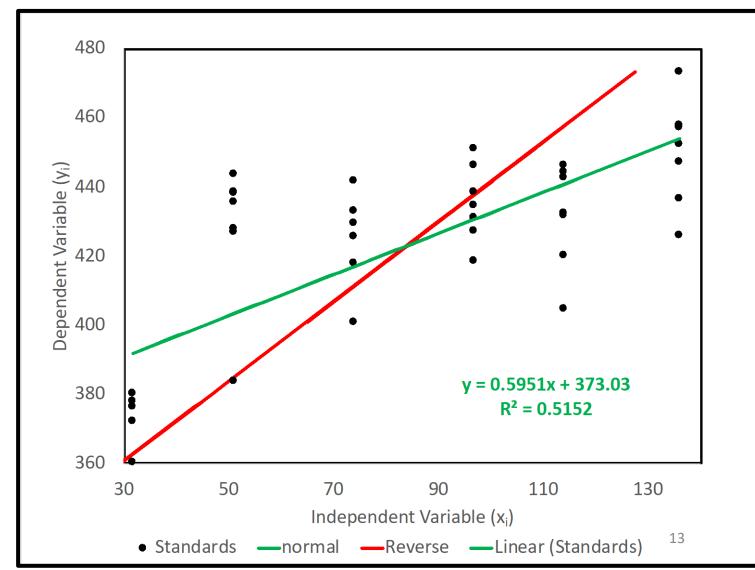

•
$$x_0 = (y_0 - b_0)/b_1$$


- Calibration curves are not measured without error
- Confidence intervals may be calculated
 - Ci's are minimal at the mid-point of the independent variable values


- Because of error in the standard curve
 - The real estimate of x₀ can only be described as being within some confidence interval
 - The estimated mean
 - Has a 50% chance of being above the mean value
 - Has a 50% chance of being below the mean value


• The confidence intervals of predicted x_0 's should be different for test samples near the center and extremes of the calibration curve


- The farther from the center of the calibration curve, the greater the ci's will be
- Recommendations are usually to keep the mean test sample values in the same range as the standards
- Extra care may be necessary when Cl's go outside the range of the standard curve as well


- Theoretical conundrum?
 - Belief that x is the independent variable
 - $y_i = b_1 x + b_0$
 - Then use inverted equation to solve for x
 - $x_0 = (y_0 b_0)/b_1$
 - In reality finding x=f(y)

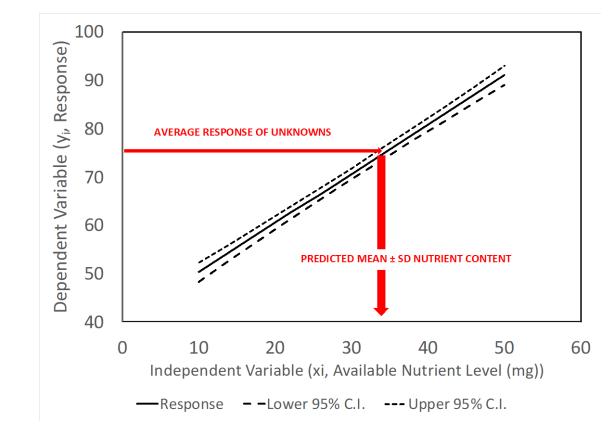
- If x were considered a function of y, the resulting standard curve would be different !
- But it would have the same R^2 !
- The reverse regression line goes through (360,30)
- Note that the variables and scales have been reversed, but not the labels
- The equation is as excel presented it

- The normal and reverse regression lines graphed in normal (x,y) space
- Note how the reverse regression line now goes through (30,360)
- While a broken clock gives the correct time twice per day, reverse regression only gives the right answer once in infinity

What <u>Is</u> The Problem?

- Typically
 - Researchers ignore error in the standard curve
 - Make x the independent variable with no associated error
 - Then try to estimate the error in x ???
 - Researchers predict one value of x for each replicate of y
 - If there are 3 replicates they make 3 predictions with zero (0) degrees of freedom each, etc.

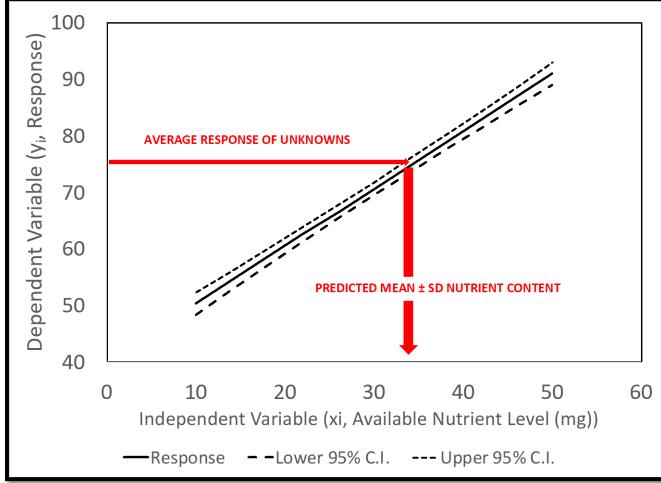
What <u>Is</u> The Problem?


- Results with the classical standard curve method are:
 - Precise
 - Reliable
 - Repeatable
- The results make us
 - Happy
 - Satisfied

What <u>Is</u> The Problem?

What do happy & staisfied have to do with research ???

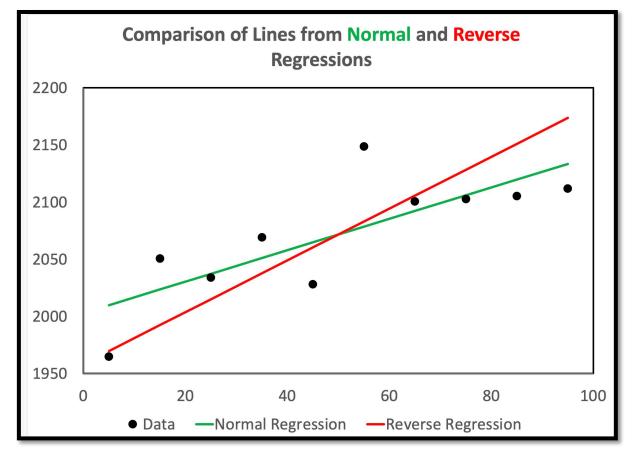
What <u>Is</u> The Answer?


- There are other methods of predicting the x value of test samples
- They are not perfect either
 - There is no direct, exact method of determining the confidence level of the composition of a test sample
- Alternate methods are based on observations and theories
- They give the same or better results than the classical, or intuitive method near the center of the calibration curve
 - With 3 replicates, one mean estimate with 2 degrees of freedom

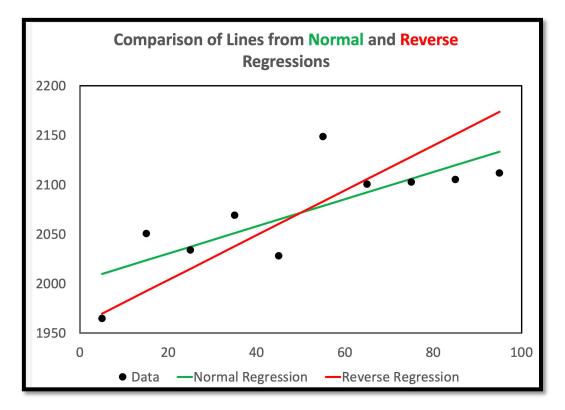
Is Changing Methods Worth The Effort?

• Effort, what effort?

- Once the calculations are programmed, there <u>is</u> no effort
- Only a chance to present data properly with smaller confidence intervals when appropriate !!!!



THE ANSWER IS THAT YOU MAY HAVE BETTER RESULTS:


- With another method simply by making different calculations
- With modern computers practically no effort at all

What Makes Understanding Why The Calibration Problem Really Is A Problem Difficult?

- It is not obvious to most biologists that:
 - The line calculated is dependent on assumptions made
 - ASSUMPTION OF y=f(X)
 - $Y = b_1(x) + b_0$
 - ASSUMPTION OF x=f(Y)
 - $Y = (x b_0) / b_1$
 - Both have exactly the same r²

What Makes Understanding Why The Calibration Problem Really Is A Problem Difficult?

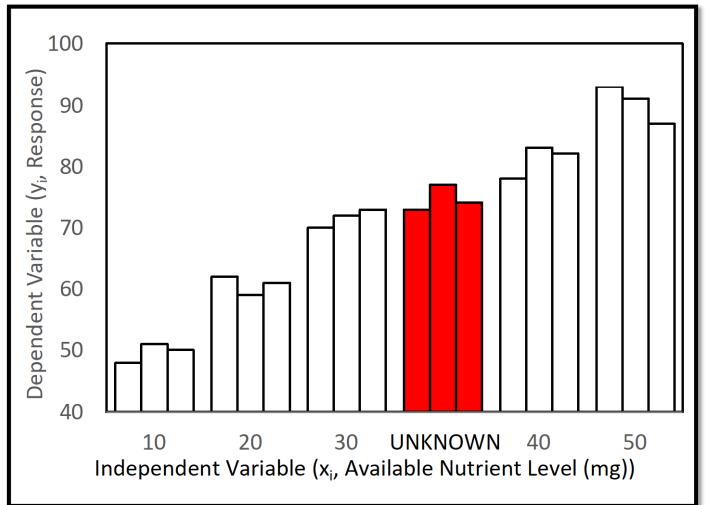
- It seems obvious that the equation with x as the independent variable can be inverted to find the value of x from y
- But when x is calculated directly from y, a different equation should be used!!
- Can it be appropriate to calculate variation for a variable that is believed to be without variation?

TRY THIS AT HOME:

IF EXCEL IS USED TO CALCULATE THE NORMAL AND REVERSE REGRESSIONS, THE RESULTING LINES ARE NOT THE SAME UNLESS R²=1.000000...

F	G	Н		J	К	L	M N	0	Р	Q		R	S	Т	U		V	W	Х	Y
	Standa	y=f(x)		b ₁ =	Normal Model 1.2068		Calcs from XL 1.20679			x=f(y) Standard or Calibration Curve			b ₁ =				Calcs from XL 0.72618			
				b ₀ =	2001.3108		2001.311							b ₀ =	-1447.1				-1447.12	
				R ² =	0.8763		0.876344	J						R ² =	0.870			L	0.87634	
		about Regression		s _{x/y} =	14.5574 0.1603					SD about Regression			s _{x/y} =	4963.3 42.38						
		of Calibration Slope of Calibration Intercept		s _{b1} = s _{b0} =	9.2417					SD of Calibration Slope SD of Calibration Intercept			s _{b1} = s _{b0} =	87405.0						
		Calibration Intercept		3 ₆₀ -	5.2417					30 01 0	andiatio	minterce	ept	3 ₆₀ -	87403.0	,,,,,				
							Calibration Data												Calibration Data	
							C _{std}	S _{std}											C _{std}	S _{std}
	2140.0	Chart Title				Obs. x _i		Chart Tr				ïtle				Obs.	x _i	Yi		
							1 5.0000	2013.7		90					•			1	2013.7	5
	2120.0						2 15.0000	2033.6		80		y =	0.7262x -		-			2	2033.6	15
	2100.0			· ·	• •		3 25.0000	2013.5		70			R ² = 0.87	63	•			3	2013.5	25
	2080.0						4 35.0000 5 45.0000	2028.4 2046.2		60					•			4	2028.4 2046.2	35 45
	2080.0						6 55.0000	2046.2		50			•					5	2046.2	55
	2060.0						7 65.0000	2104.6		40			-					7	2104.6	65
	2040.0			2068x + 2001	.3		8 75.0000	2099.0		30		-						8	2099.0	75
		•	• R	² = 0.8763			9 85.0000	2105.2		20		· ·						9	2105.2	85
	2020.0	• •					10 95.0000	2103.9		10		•						10	2103.9	95
	2000.0	10.000 20.000 30.000	0 40.0000 50.0000	60.0000 70.0000 80.0	000 90.0000 100.000					0 2000.0	2020	0.0 204	0.0 2060	0 2080.0	2100.0	2120.0				
							Sum	Sum											Sum	Sum
_							500	20617											20616.503	500.000
-							Avg	Avg											Av22	Avg
							50	2061.650											2061.6503	50.000

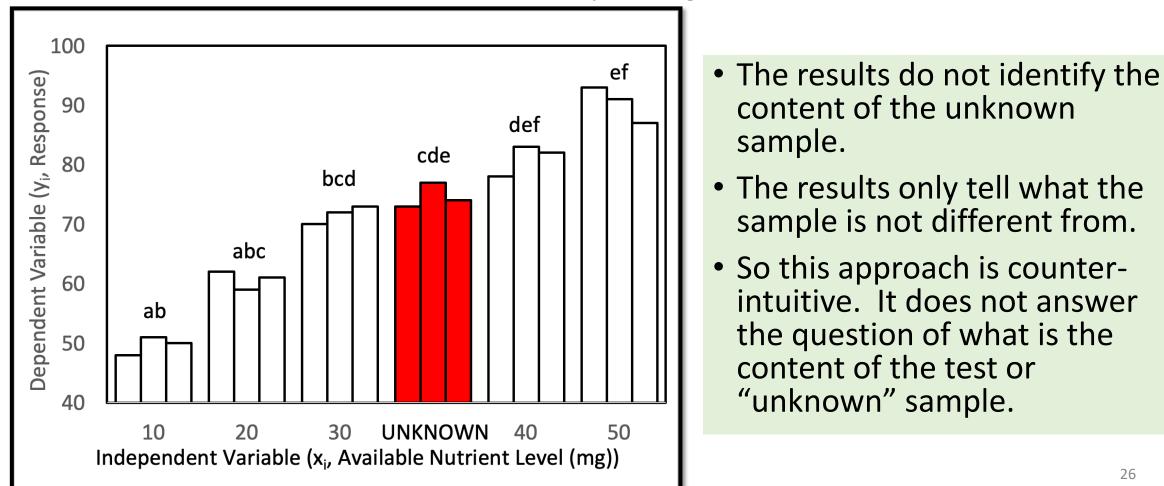
HOW ARE CALIBRATION OR STANDARD CURVES TYPICALLY EVALUATED?


- The **COUNTER-INTUITIVE** method uses one-way ANOVA and multiple range tests to determine which standards the test samples are not different from.
- The INTUITIVE method uses classical (or normal, or standard) regression in the form of y=f (x) and is inverted x=(y-b₀)/b₁ to find variation in x in test samples.
- The SOPHISTIC method uses reverse regression in the form of x=g (y) and x=b₁(y)-b₀ to find variation in x in test samples.
- ABDUCTIVE methods use standard regression in the form of y=f (x) and x=(y-b₀)/b₁ to find the mean value for x. They use equations based on observation and theory to find variation in x in test samples.

HOW ARE CALIBRATION OR STANDARD CURVES TYPICALLY EVALUATED?

- The **COUNTER-INTUITIVE** method uses one-way ANOVA and multiple range tests to determine which standards the test samples are not different from.
- The INTUITIVE method uses classical (or normal, or standard) regression in the form of y=f (x) and is inverted x=(y-b₀)/b₁ to find variation in x in test samples.
- The SOPHISTIC method uses reverse regression in the form of x=f (y) and x=b₁(y)-b₀ to find variation in x in test samples.
- **ABDUCTIVE** methods use standard regression in the form of y=f (x) and x=(y-b₀)/b₁ to find the mean value for x. They use equations based on observation and theory to find variation in x in test samples.

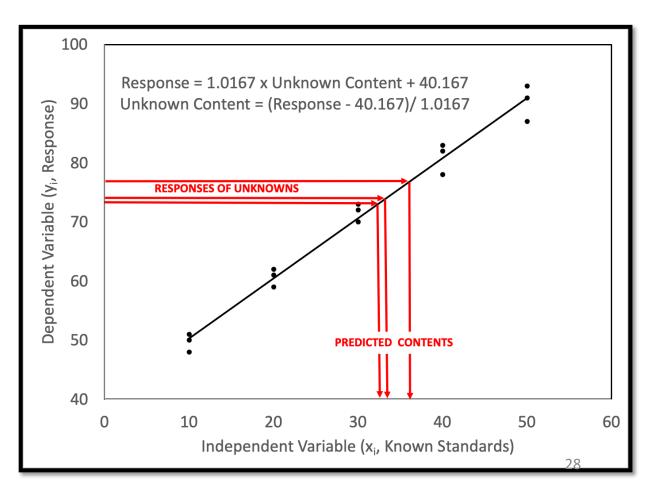
Determining The Value Of Some Unknown Property Of A Sample


- Compare the "unknow" sample to samples of known composition
- Conduct an experiment and get responses from the TEST and known STANDARD samples

Determining The Value Of Some Unknown Property Of A Sample

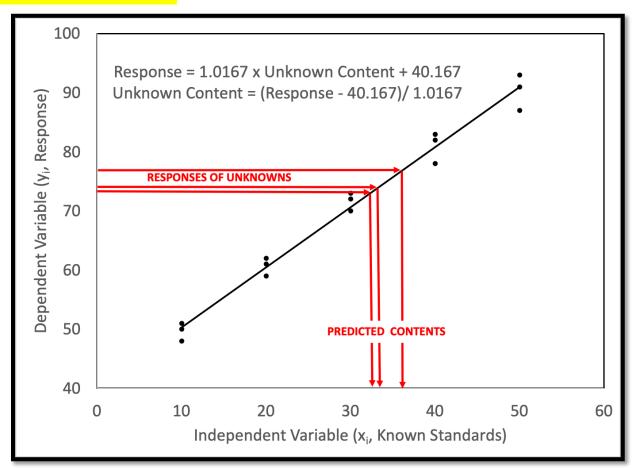
• First thought may be to compare values of known and unknown samples using

t-tests or multiple-range tests



HOW ARE CALIBRATION OR STANDARD CURVES TYPICALLY EVALUATED?

- The **COUNTER-INTUITIVE** method uses one-way ANOVA and multiple range tests to determine which standards the test samples are not different from.
- The INTUITIVE method uses classical (or normal, or standard) regression in the form of y=f (x) and is inverted x=(y-b₀)/b₁ to find variation in x in test samples.
- The SOPHISTIC method uses reverse regression in the form of x=f (y) and x=b₁(y)-b₀ to find variation in x in test samples.
- **ABDUCTIVE** methods use standard regression in the form of y=f (x) and x=(y-b₀)/b₁ to find the mean value for x. They use equations based on observation and theory to find variation in x in test samples.


DETERMINING THE VALUE OF SOME UNKNOWN PROPERTY OF A SAMPLE - NORMAL REGRESSION & INVERSE PREDICTION

- This approach is to compare the responses of the test and standard samples using simple linear regression
- The results <u>do</u> identify the content of the test sample.
- If there are replications of the test sample responses, an SD of the amount of unknown in the sample can be calculated
- So this approach is intuitive. It answers the question of what is the content of the "unknown" in the sample

DETERMINING THE VALUE OF SOME UNKNOWN PROPERTY OF A SAMPLE - NORMAL REGRESSION & INVERSE PREDICTION

 THIS APPROACH MAY BE INTUITIVE: COMPARE THE RESPONSES OF THE TEST AND STANDARD SAMPLES USING SIMPLE LINEAR REGRESSION

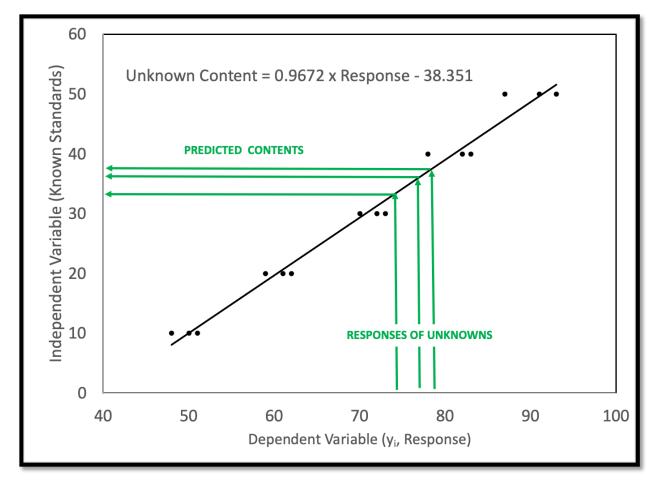
- This process is called Inverse Prediction
- With regression,
 y=f(x), y=b₁x+b₀
- With Inverse prediction, the equation is rearranged to get x=f(y), x=(y-b₀)/b₁

ASSUMPTIONS OF INVERSE PREDICTION?

ASSUMPTIONS OF REGRESSION

- Y is dependent on X
 Y=f (X)
- X values are known precisely
 - There is no variation in X values
- There is variation in Y

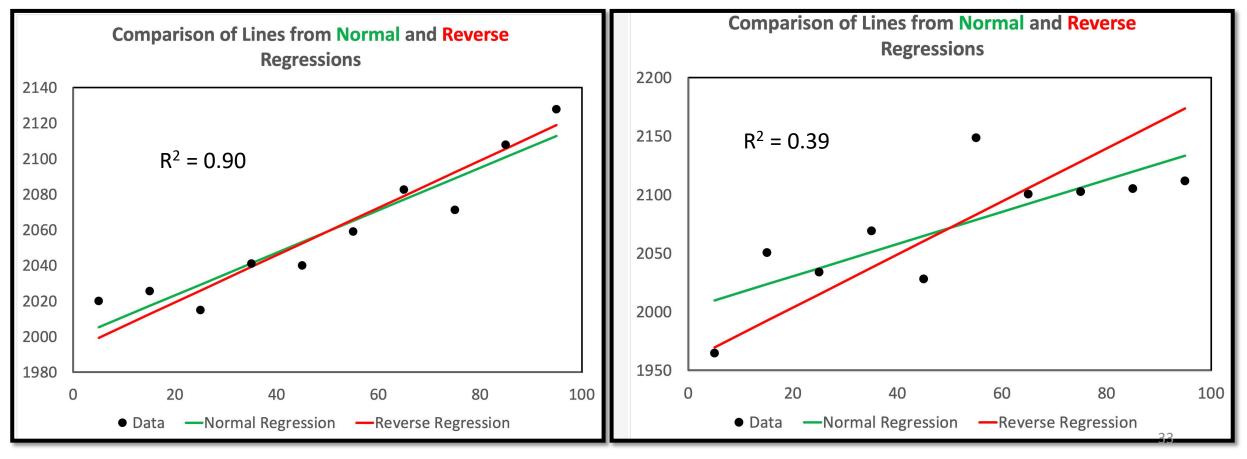
ASSUMPTIONS OF INVERSE PREDICTION


- X is dependent on Y
 - X=g (Y)
 - Y values are known precisely
 - There is variation in X values
 - There is no variation in Y

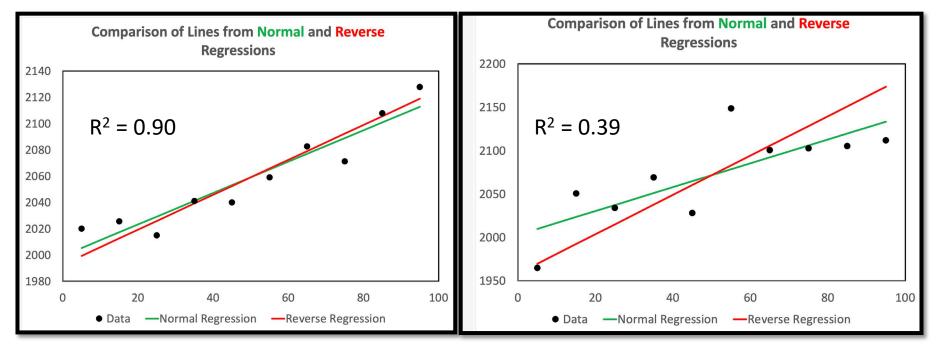
HOW ARE CALIBRATION OR STANDARD CURVES TYPICALLY EVALUATED?

- The **COUNTER-INTUITIVE** method uses one-way ANOVA and multiple range tests to determine which standards the test samples are not different from.
- The INTUITIVE method uses classical (or normal, or standard) regression in the form of y=f (x) and is inverted x=(y-b₀)/b₁ to find variation in x in test samples.
- The SOPHISTIC method uses reverse regression in the form of x=g (y) and x=b₁(y)-b₀ to find variation in x in test samples.
- **ABDUCTIVE** methods use standard regression in the form of y=f (x) and x=(y-b₀)/b₁ to find the mean value for x. They use equations based on observation and theory to find variation in x in test samples.

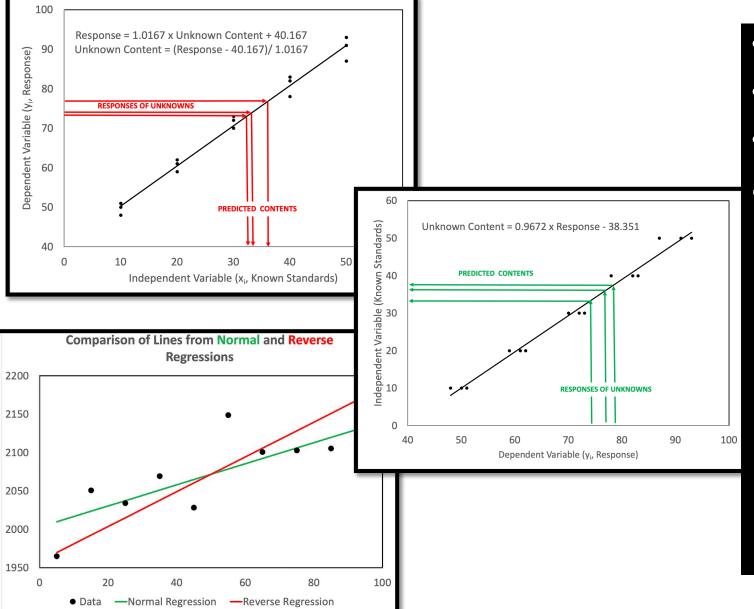
REVERSE REGRESSION


- Switches X and Y axes
- Calculate X=b₁(Y)-b₀
- Estimate X of test samples directly from equation
- More problems than intuitive
 - No variation in curve
 - 0 degrees of freedom for each test sample
 - Uses wrong equation for prediction

Reverse Regression Reality Check


Uses wrong equation for prediction

- Degree of wrongness depends on R² of line
- With R²>0.95, there is very little difference in lines

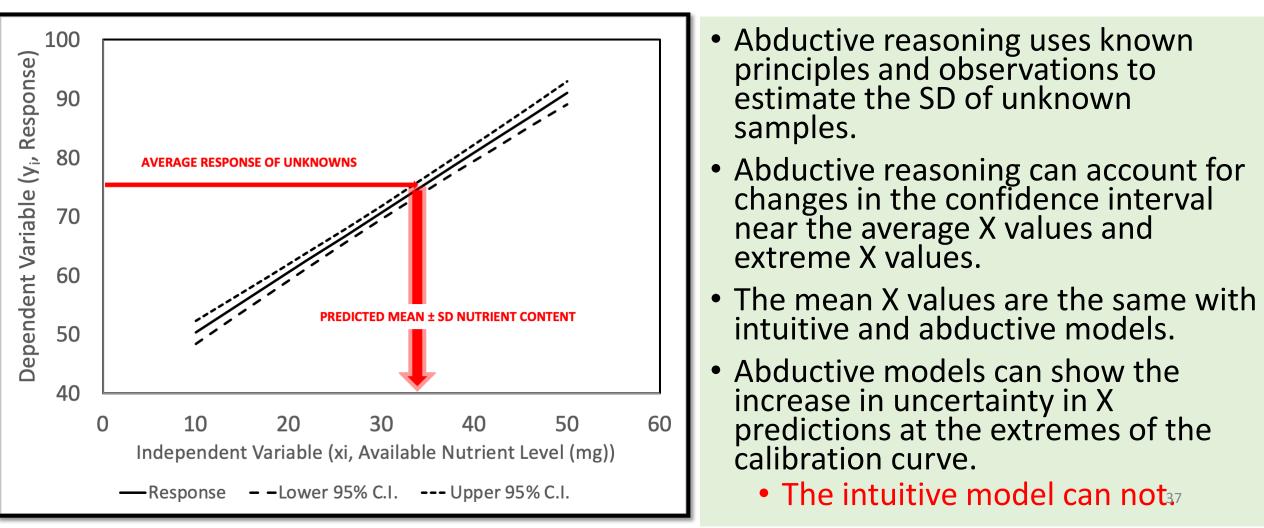

Reverse Regression Reality Check

- Understood: "not significantly different" does not mean "the same as"
- Significantly different from wrong does not mean right
- The sophistic method gives the wrong mean, the c. I. Is irrelevant!!!

 The mean estimate from the sophostic model may be close, but except for one point it is still <u>always</u> wrong

Inverse Prediction & The Reverse Regression: Both Techniques Are Problematic – <u>Assumptions Not True</u>

- Pretend standard curve has no C.I.
- 0 degrees of freedom predictions
- Overestimate variation


 A method for estimating the confidence interval of test samples should be based on observations and theories, not concepts known not to be true.

HOW ARE CALIBRATION OR STANDARD CURVES TYPICALLY EVALUATED?

- The **COUNTER-INTUITIVE** method uses one-way ANOVA and multiple range tests to determine which standards the test samples are not different from.
- The INTUITIVE method uses classical (or normal, or standard) regression in the form of y=f (x) and is inverted x=(y-b₀)/b₁ to find variation in x in test samples.
- The SOPHISTIC method uses reverse regression in the form of x=f (y) and x=b₁(y)-b₀ to find variation in x in test samples.
- **ABDUCTIVE** methods use standard regression in the form of y=f (x) and x=(y-b₀)/b₁ to find the mean value for x. They use equations based on observation and theory to find variation in x in test samples.

To Estimate The Variation In X From An Observed Y Requires Abductive Reasoning

• Abductive models make best guesses estimates of the C.I. For what X really is

"Graybill's Equation" Includes Variation From Both Uncertainty In The Line And In The Unknown

$$s_0 = \frac{s_{y/x}}{b} \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(y_0 - \bar{y})^2}{b^2 \sum_i (x_i - \bar{x})^2}}$$

and

$$s_{x/y} = \sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{n - 2}}$$

- S₀ = standard deviation of the estimated
 x₀ from an unknown response, y₀
- B is the slope of the line
- $M = number of replicates of (y_0)$
- N = number of responses (y_i) to the standards (x_i)
- Y₀ is the average of the unknown samples
- S_{y/x} = standard error of the regression line

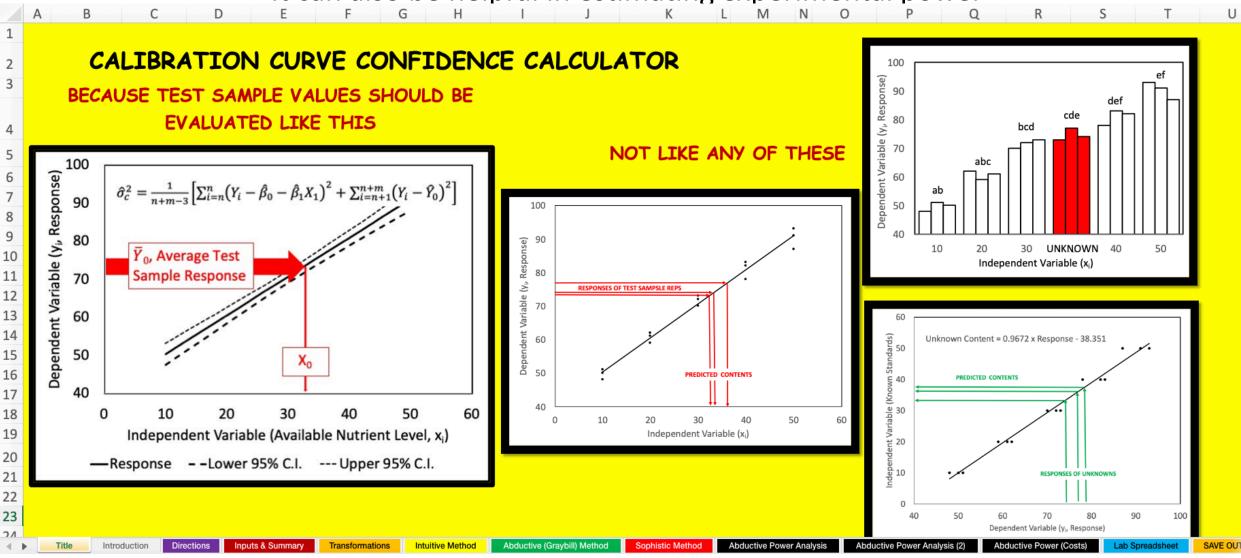
$$s_0 = \frac{s_{y/x}}{b} \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(y_0 - \bar{y})^2}{b^2 \sum_i (x_i - \bar{x})^2}}$$

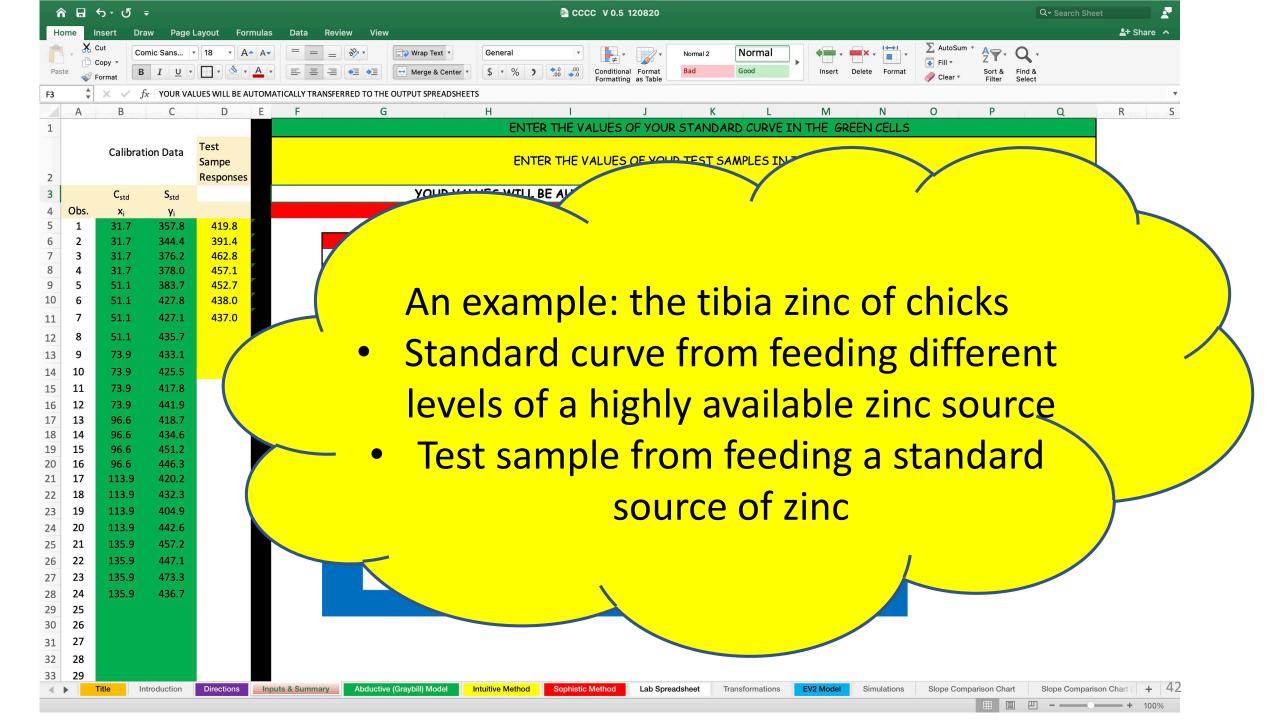
- Graybill's abductive method is useful for:
 - Estimating experimental power
 Influence of changing replicates or standard levels

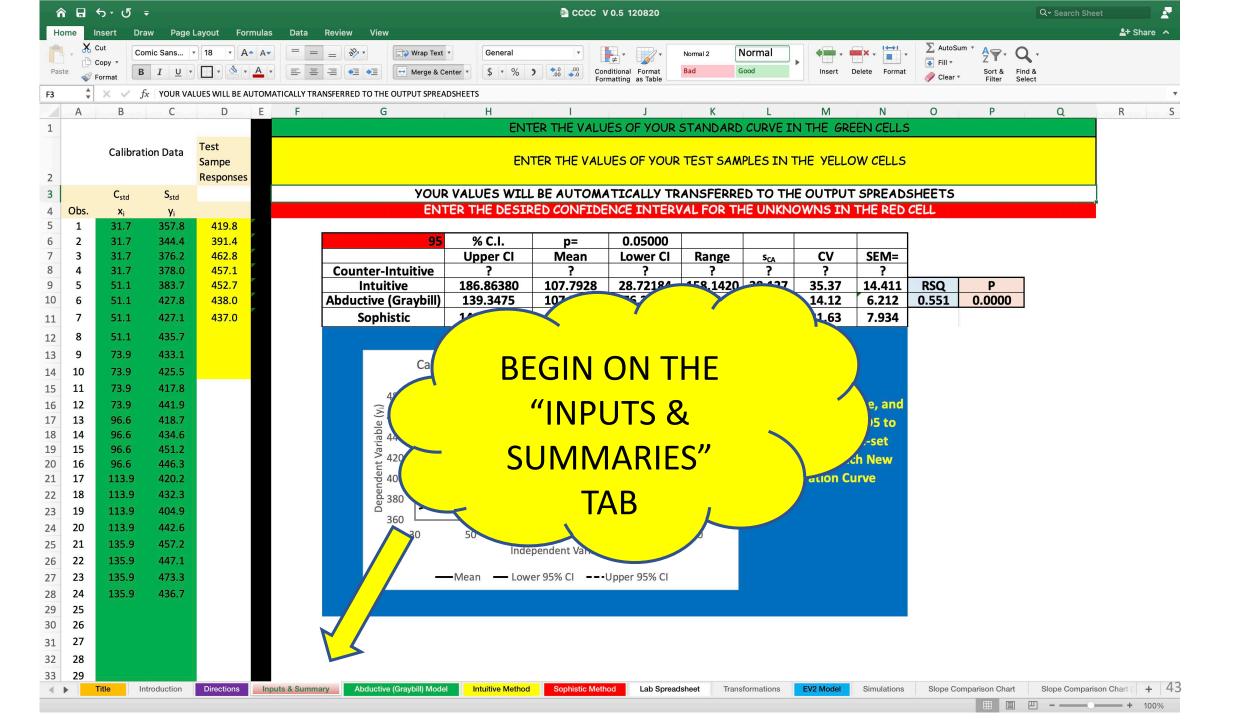
on s₀

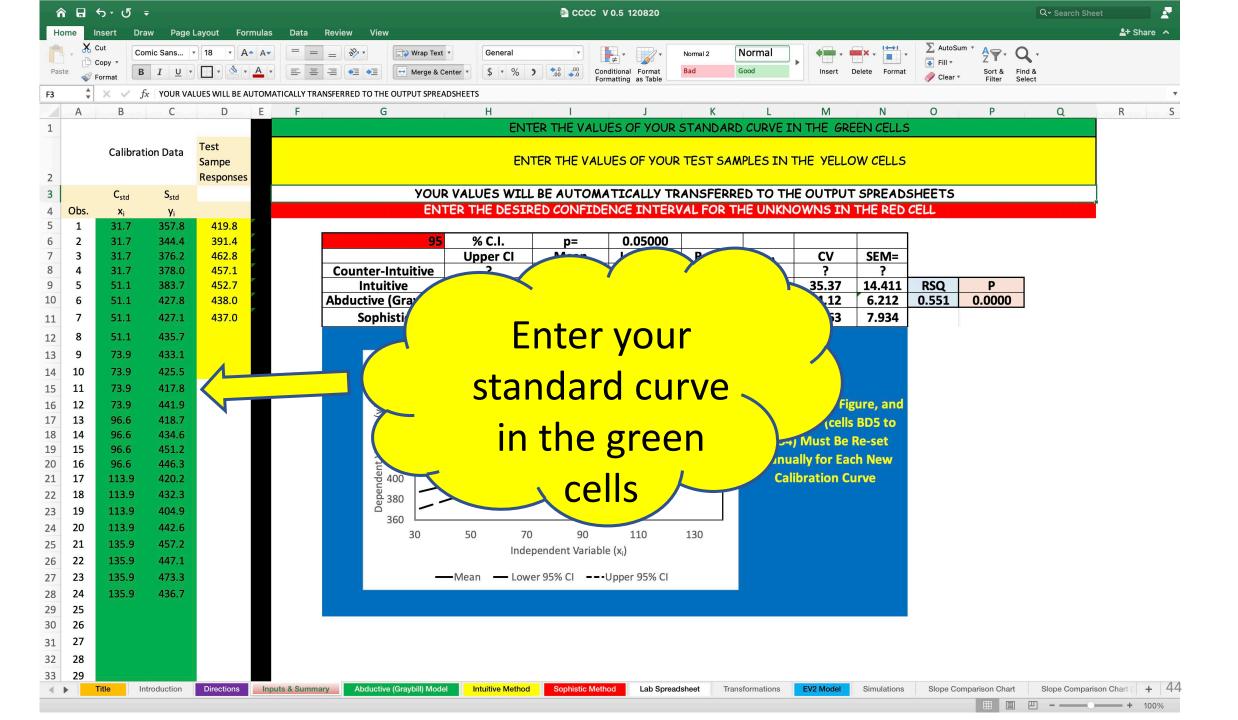
2. Quality control

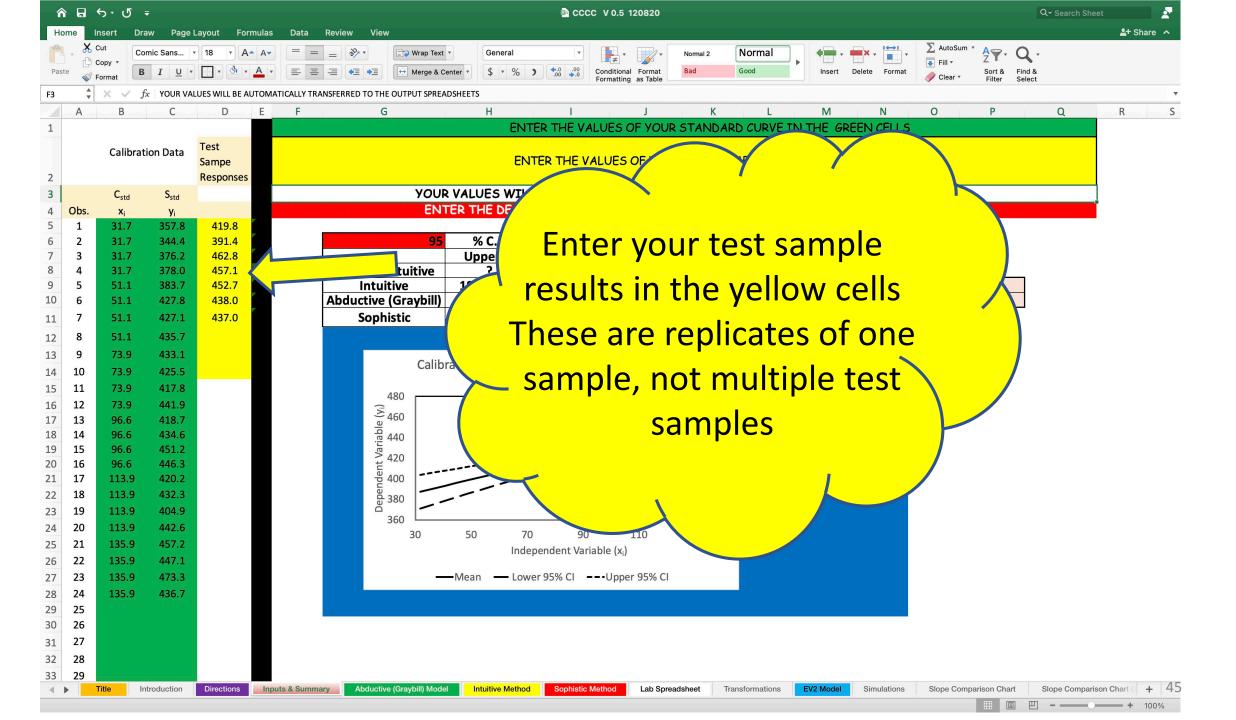
Influence of difference from \overline{X} on magnitude of the confidence interval

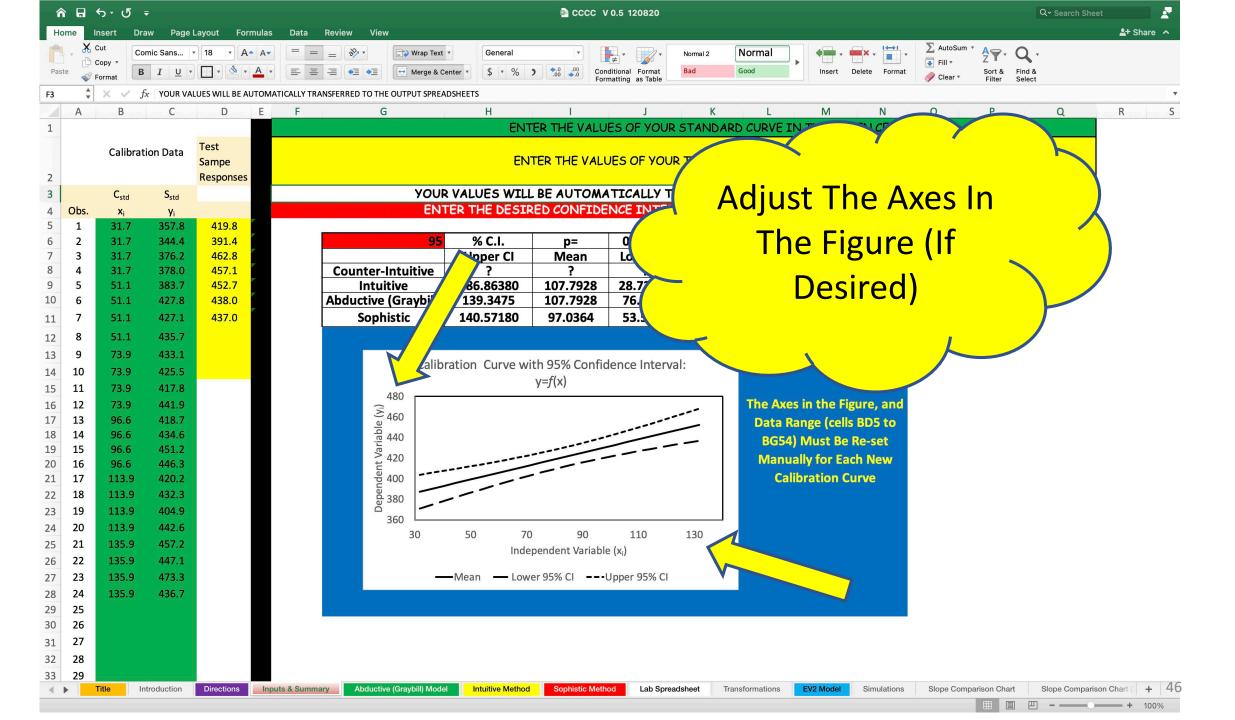

How Are Calibration Or Standard Curves Typically Evaluated?

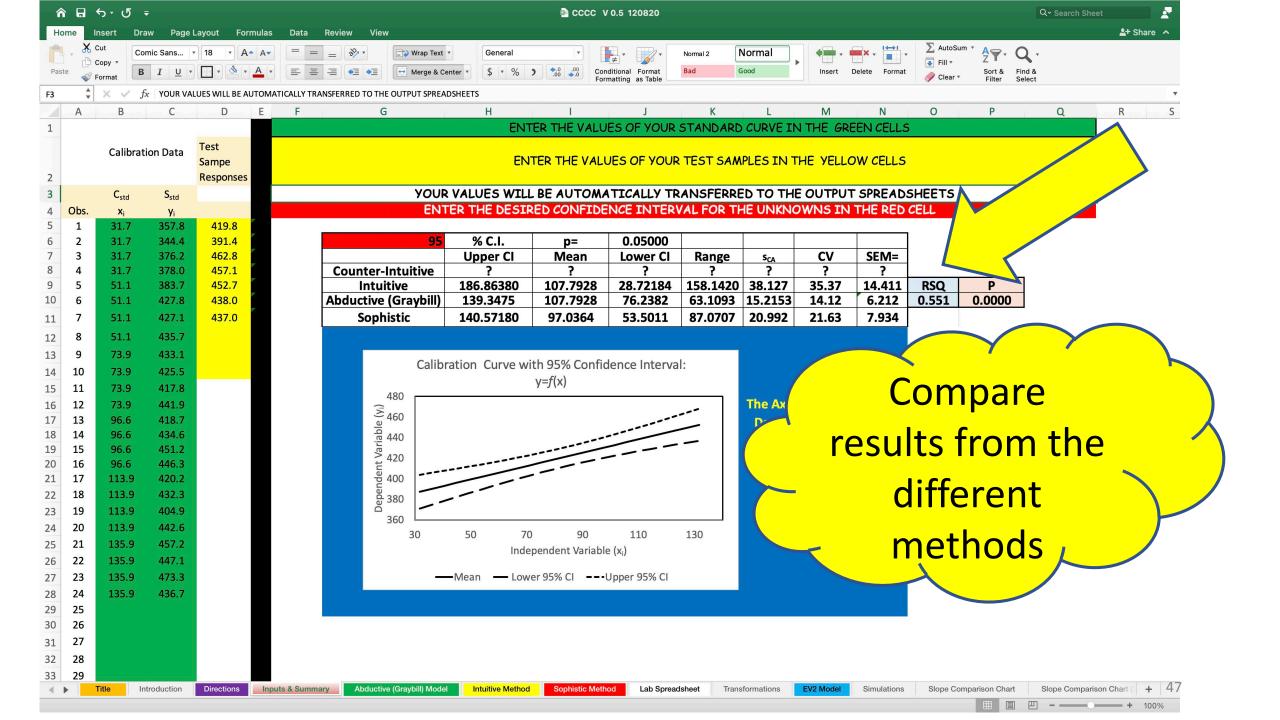

And now to show some comparisons of actual data


- The counter-intuitive method uses one-way ANOVA and multiple range tests to determine which standards the test samples are not different from.
- The intuitive method uses classical (or normal, or standard) regression in the form of y=f (x) and inverted x=(y-b₀)/b₁ to find variation in x in test samples
- The sophistic method uses reverse regression in the form of x=f (y) and x=b₁(y)-b₀ to find variation in x in test samples
- Abductive methods use standard regression in the form of y=f (x) and x=(y-b₀)/b₁ to find the mean value for x. They use equations based on observation and theory to find variation in x in test samples


A Microsoft Excel Workbook Written To Make Calculations And Comparisons


It can also be helpful in estimating experimental power



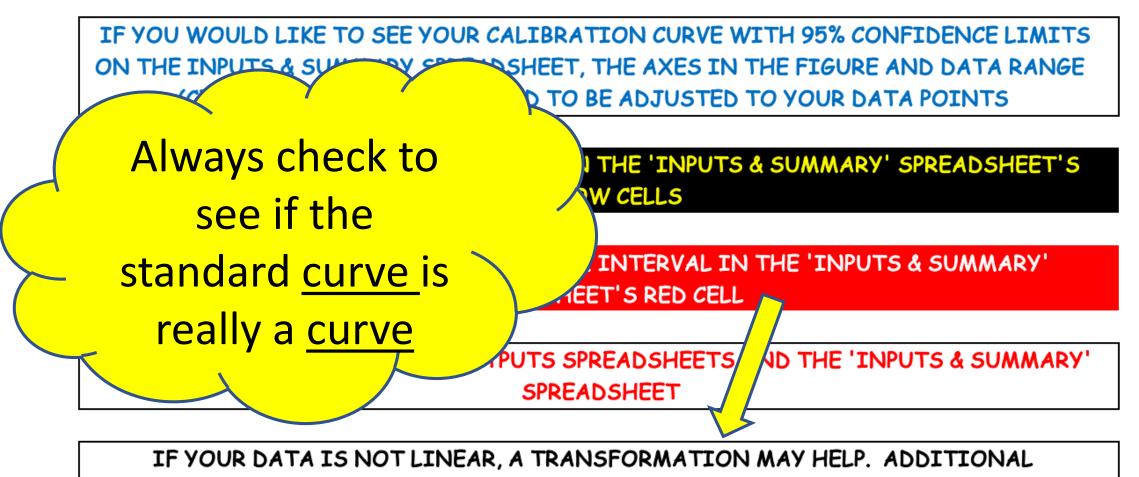


95	% C.I.	p=	0.05000						
	Upper Cl	Mean	Lower Cl	Range	S _{CA}	CV	SEM=		
Counter-Intuitive	?	?	?	?	?	?	?		
Intuitive	186.86380	107.7928	28.72184	158.1420	38.127	35.37	14.411	RSQ	Р
Abductive (Graybill)	139.3475	107.7928	76.2382	63.1093	15.2153	14.12	6.212	0.551	0.0000
Sophistic	140.57180	97.0364	53.5011	87.0707	20.992	21.63	7.934		

Mean values for intuitive and abductive models are the same

The con interval abductive is much	for the method									
			0.05000							
95	% C.I.	p=	0.05000							
	Upper Cl	Mean	Lower Cl	Range	S _{CA}	CV	SEM=			
Counter-Intuitive	?	?	?	?	?	?	?			
Intuitive	186.86380	107.7928	28.72184	158.1420	38.127	35.37	14.411	RSQ	Р	
Abductive (Graybill)	139.3475	107.7928	76.2382	63.1093	15.2153	14.12	6.212	0.551	0.0000	
Sophistic	140.57180	97.0364	53.5011	87.0707	20.992	21.63	7.934			

This is expected since the test samples were near the center of the standard curve where the confidence interval is smallest


Mean ?	Lower Cl ?	Range ?	S _{CA}	CV 2	SEM=		
?	?	?	2	2	2		
		•		•	ſ		
107.7928	28.72184	158.1420	38.127	35.37	14.411	RSQ	Р
107.7928	76.2382	63.1093	15.2153	14.12	6.212	0.551	0.0000
97.0364	53.5011	87.0707	20.992	21.63	7.934		
	107.7928	107.7928 76.2382	107.7928 76.2382 63.1093	107.7928 76.2382 63.1093 15.2153	107.7928 76.2382 63.1093 15.2153 14.12	107.7928 76.2382 63.1093 15.2153 14.12 6.212	107.7928 76.2382 63.1093 15.2153 14.12 6.212 0.551

The SEM for the abductive method is also much smaller and more accurately represents

reality

From The Directions Tab:

ENTER THE VALUES OF YOUR STANDARD CURVE IN THE 'INPUTS & SUMMARIES' SPREADSHEET GREEN CELLS

INSTRUCTIONS ARE INCLUDED ON THE "TRANSFORMATIONS" SPREADSHEET.

Is The Calibration Curve Really A Curve?

						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
			Linear	Log10(x)	LN(x)	Sq Rt(x)	1 / x =	x ²	1/x ²	Sq Rt(x+.5)	Ln(x+1)	Cube Rt (x)	ln[x/(1-x)]	0.5ln [(1+x)/(1- x)]
	-+	Factor		1	<u>.</u>		·]		ι — · · · · · · · · · · · · · · · · · ·	+	<u>ا </u>	t	1000	1000
-		Inverse Transformation	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656		31.6750656
		m	-272.9300	-0.4559	-1.0496	-12.5333	0.1094	-46862.8451	0.0041	-12.4169	-0.9422	-2.8476	-8.2561	-0.2751
		b	0.8466	0.0055	0.0127	0.0509	-0.0002	130.9265	0.0000	0.0507	0.0125	0.0169	0.0137	0.0009
		R ²	0.5506	0.6449	0.6449	0.5995	0.7081	0.4589	0.7280	0.5991	0.6434	0.6153	0.6393	0.5496
	Obs.	Yi	x _i											
-	1	357.798	31.675	1.501	3.456	5.628	0.032	1003.310	0.001	5.672			-3.420	0.032
	2	50	31.675	1.501	3.456	5.628	0.032	1003.310	0.001	5.672	3.487	3.164	-3.420	0.032
			31.675	1.501										0.032
		R	31.675	1.501	c:	ply observe	the D2 value	as to datam	nine which -	of these the	neformatio	ne will be m	ost helpful	0.032
			51.058	1.708		rove the fit o							•	0.051
			058	1.708 1.708	- impi	ove the tit	or your dati	a io a straig			TOTI OTE TA	ar could mo	n e sui radie	for 0.051 0.051
			58	1.708	<u> </u>				your d	au i U.				0.051
Obconvo the			106	1.708			S		M E -	and a state			tal, at a	0.074
Observe the	2		16	1.869		transformati				-		•		0.074
		-11	i i	1.869	dividi.	ng by zero.	i o avoid th	•		-		то 10, then	100, then 1	0.074
"Transformatio	n	S		1.869	4			etc. and s	top when nu	imbers first	appear.			0.074
				1.985	4		<u>,</u>	_			_			0.097
spreadsheet	+		9	1.985		n you have c								
spicaustice	L		<mark>549</mark>	1.985	'Inpu	uts & Summa	v <mark>ry' spreads</mark>	sheet. The i	results pres	sented will b	be for the t	ransformed	1 data and n	
			9 6.649	1.985			to be inv	verse transf	^s ormed to li	inear space t	to be interp	vreted.		0.097
		4	113.933	2.057						-	•			0.114
			113.933	2.057	The 1	formulas to i	inverse tran	isform the i	results appe	ar in Row 2	above. The	values in R	ow 3 and Ro	ow 8 0.114
		1	113.933	2.057 2.057	4	ould be the								0.114
		457.198	113.933 135.931	2.057	• •	verse transfo						•		0.114
	21	457.198	135.931 135.931	2.133	<u> </u>					rmed manual				0.137
	22	447.067	135.931	2.133				11176						0.137
	23	475.275	135.931	2.133	·									0.137
	25											·	52	5.1.57
-														

		Linear	Log10(x)	LI	N(x)	Sq Rt(x)	1 / x =	x²	1/x²	Sq Rt(x+.5)	Ln(x+1)	Cube Rt (x)	ln[x/(1-x)]	0.5ln [(1+x)/(1- x)]
	Factor												1000	1000
	Inverse Transformation	31.6750656	31.6750656	31.6	750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656
	m	-272.9300	-0.4559	-1.	.0496	-12.5333	0.1094	-46862.8451	0.0041	-12.4169	-0.9422	-2.8476	-8.2561	-0.2751
	b	0.8466	0.0055	0.	0127	0.0509	-0.0002	130.9265	0.0000	0.0507	0.0125	0.0169	0.0137	0.0009
	R ²	0.5506	0.6449	0.6	5449	0.5995	0.7081	0.4589	0.7280	0.5991	0.6434	0.6153	0.6393	0.5496
Obs.	y _i	x _i												
1	357.7	31.675	1.501	3	.456	5.628	0.032	1003.310	0.001	5.672	3.487	3.164	-3.420	0.032
2	344.360	1.675	1.501	3	.456	5.628	0.032	1003.310	0.001	5.672	3.487	3.164	-3.420	0.032
3	376.245	75	1.501											0.032
4	378.016		1.501									X		0.032
5	383.679	51	1.708	3		ply observe		et to deter				· ·		0.051
6	427.800	51.0.	1.708	3	impr	ove the fit (× .	. .			_	9.051
7	427.094	51.058	1.708	3			Oł	serve	he r	^{.2} valu	es in	Rowf	5 to	X
8	435.683	51.058	1.708	3						Vara				
9	433.117	73.906	1.869	4	Ifat	ransfo		doto	rmin	e whic	h of t	hoco		
10	425.500	73.906	1.869	4		ng by z		uele				.11232		
11	417.771	73.906	1.869	4	arvian	y by z					I		1	
12	441.892	73.906	1.869	4			tran	storm	nation	s will	pe mo	ost ne		
13	418.666	96.649	1.985	4									•	
14	434.649	96.649	1.985	4	W		to i	mpro	ve the	e fit of	vour	data	toa	
15	451.188	96.649	1.985	4	'I						,			
16	446.331	96.649	1.985	4			C	traigh	tling	. Or ti	ry a d	ifforo	nt	
17	420.226	113.933	2.057	4		\succ	3	L laigh		. Or ti	yau		IL	
18	432.314	113.933	2.057	4	The		±							
19	404.861	113.933	2.057	4			tra	nstorr	natior	n that	COUIC	a be n	lore	114
20	442.608	113.933	2.057	4	51					~				0.114
21	457.198	135.931	2.133	4	inv			SU	itable	for yo	our da	ata.		0.137
22	447.067	135.931	2.133	4						,				0.137
23	473.275	135.931	2.133	4								6		0.137
24	436.685	135.931	2.133	4										0.137
25				•										

0.5ln x2 $1/x^2$ Log10(x) LN(x) Sq Rt(x) Sa Rt(x+.5) Ln(x+1) Cube Rt (x) $\ln[x/(1-x)]$ [(1+x)/(1-Linear x)] 1000 1000 Factor... Inverse 31.6750656 31.6750656 31.67506 31.6750656 31.6750656 31.6750656 31.675065 0656 31.6750656 31.6750656 31.6750656 ransformation -272.9300 -1.0496-12.5333 0.1094 -8.2561 -0.4559 0.0041 -12.4169-2.8476-0.2751m 0.0127 -0.0002 130.9 0.8466 0.0055 0.0509 0.0000 0.0507 0.0125 0.0169 0.0137 0.0009 b R² 0.5506 0.6449 0.5995 0.7081 0.4589 0.7280 0.5991 0.6434 0.6153 0.6393 0.6449 0.5496 Obs. Yi Xi 1.501 3.456 5.628 357.798 31.675 0 032 1003.310 0.032 1 -3.420 3.456 2 344.360 31.675 1.501 5.628 0.032 -3.420 3 376.245 31.675 1 501 0.032 4 378.016 31.675 0.032 5 383.679 51.0 0.051 6 427.800 .051 When A transformation has been chosen, paste 51 7 427.094 8 435.683 the values from that column to Column B on the 9 433.117 10 425.50 11 'inputs & summary' spreadsheet. The results 12 13 14 presented will be for the transformed data and 15 16 need to be inverse transformed to linear space 17 420 18 19 0.114 to be interpreted. 20 0.114 eed to be 0.137 21 22 447.0 0.137 23

0.137

Ö.137

473.275

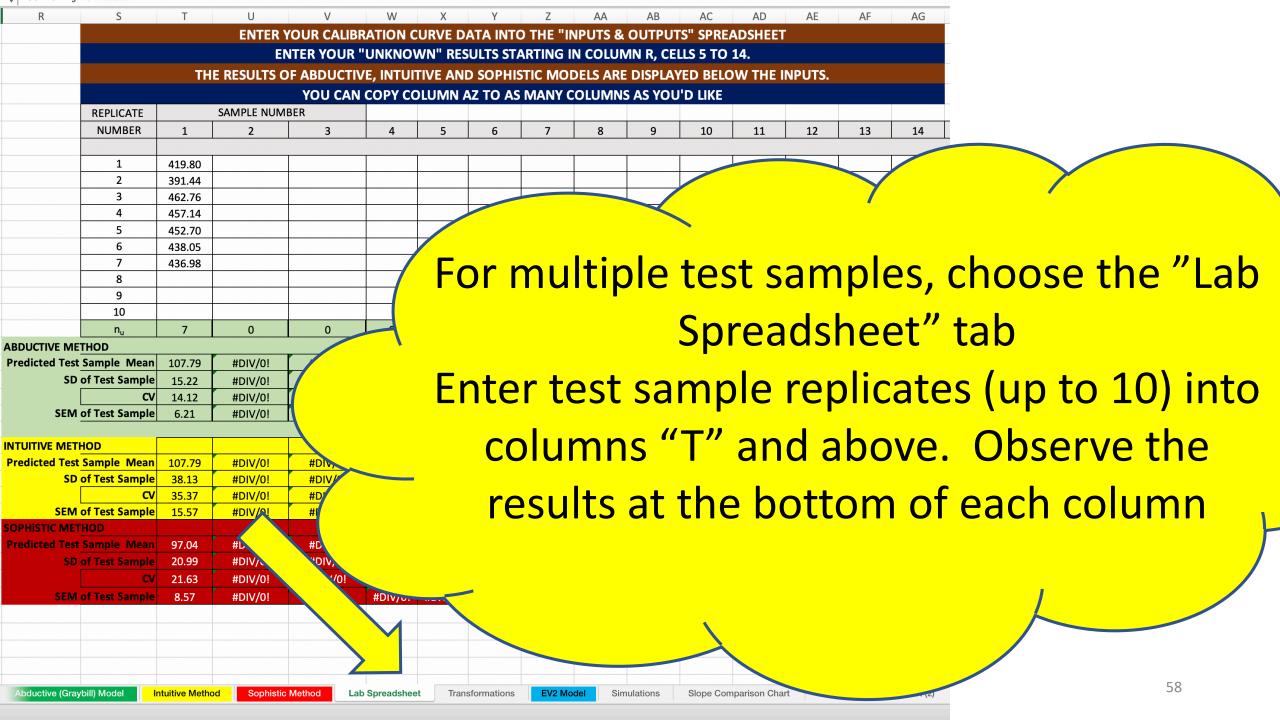
436.685

135.931

24

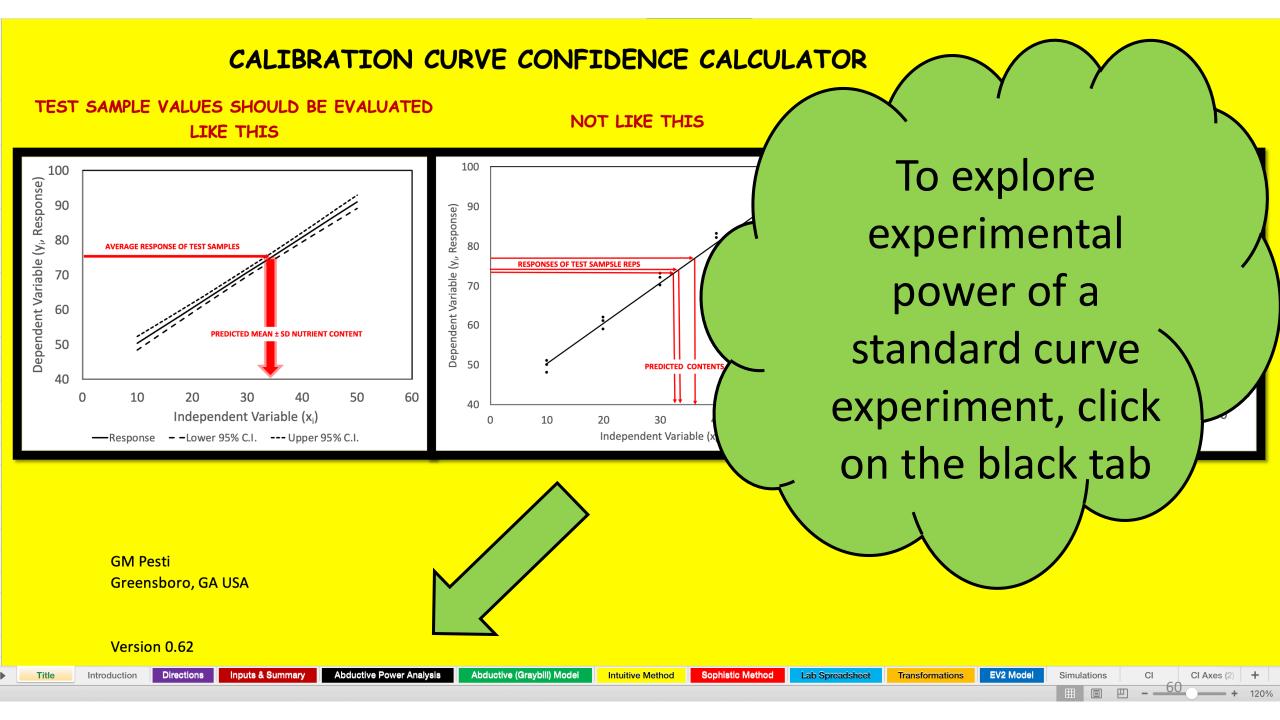
25

The formulas to inverse transform the results appear in Row 3. The values in Row 3 and Cell C8 should be the same. Rows 8 to 54 transform the data. The results on the Inputs & Summary spreadsheet will need to be inverse transformed manually


		Linear	Log10(x)	LN(x)	Sq Rt(x)	1 / x =	x ²	1/x ²	Sq Rt(x+.5)	Ln(x+1)	Cube Rt (x)	ln[x/(1-x)]	0.5ln [(1+x)/(1- x)]
	Factor											1000	1000
	Inverse Transformation	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	2 ,50656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656	31.6750656
	m	-272.9300	-0.4559	-1.0496	-12.5333	0.1094	-46862.8451	0.0041	-12.4169	-0.9422	-2.8476	-8.2561	-0.2751
	b	0.8466	0.0055	0.0127	0.0509	-0.0002	130.9265	0.0000	0.0507	0.0125	0.0169	0.0137	0.0009
	R ²	0.5506	0.6449	0.6449	0.5995	0.7081	0.4589	0.7280	0.5991	0.6434	0.6153	0.6393	0.5496
Obs.	Уi	x _i											
1	357.798	31.675		3.456	5.628	0.032	1003.310	0.001	5.	3.487	3.164	-3.420	0.032
2	344.360	31.675	1.501	3.456	5.628	0.032	1003.310	0.001	5.672	3.487	3.164	-3.420	0.032
3	376.245	31.675	1.501	3									0.032
4	378.016	31.675	1.501										0.032
5	383.679	51.058	1.708		• •				of these tro				0.001
6	427.800	51.058	1.708	: impr	ove the fit	of your dat	a to a straig	ht line. Or	• try a diffei	rent one th	at could mo	re suitable	for 0.051

In this example the data were log₁₀ transformed, the line was fitted and the ci was calculated. The results then had to be inverse transformed (raised to the x power) to be interpreted in normal space. Note that the mean is no longer in the center of the CI.

95	% C.I.	p=	0.05							
	Upper Cl	Mean	Lower Cl	Range	R ²					
	Linear Standard Curve									
Intuitive	127.4	106.9	86.3	41.1	0.640					
Abductive - Graybill	130.2	106.9	83.5	46.6	0.640					
Transformed Standard Curve : log ₁₀ (x)										
Intuitive	2.1248132	2.0070633	1.8893133	0.2	0.712					
Abductive - Graybill	2.1261638	2.0070633	1.8879627	0.2	0.712					
	Inverse	Transformed : 1	0 ^x							
Intuitive	133.3	101.6	77.5	55.8						
Abductive - Graybill	133.7	101.6	77.3	56.4						


95	% C.I.	p=	0.05		
	Upper Cl	Mean	Lower Cl	Range	R ²
	Linea	r Standard Curve			
Intuitive	127.4	106.9	86.3	41.1	0.640
Abductive - Graybill	130.2	106.9	83.5	46.6	0.640
	Transformed	Standard Curve	: log ₁₀ (x)		
Intuitive	2.1248132	2.0070633	1.8893133	0.2	0.712
Abductive - Graybill	2.1261638	2.0070633	1.8879627	0.2	0.712
	Inverse	Transformed : 1	.0 ^x		
Intuitive	133.3	101.6	77.5	55.8	
Abductive - Graybill	133.7	101.6	77.3	56.4	

In this example the range is larger for the abductive than the intuitive methods. That is because the test sample values were near the extremes of the standard curve where the confidence interval is wider.

Graybill's Abductive Method Should Only Improve Your Results

It can also be helpful in estimating experimental power.

Q- Search Sheet

2+ Share

Page Layout Formulas Data View Review

B I U • H • 🕉 • A •

 $y_i = b1^* x_i + b_0$

D

🖃 🖉 Wrap Text

E E 😸 👀

Graybill

OLS Model

0.648

368.921

0.913

7.000

436.983

104.963

4.371

4.164

1.784

6.767

0.030

2.558

31.308

104.360

31.6751

462.76

 $S_{TEST SAMPLE} =$

THE BEST CASE SCENARIO (BCS) IS WITH ALL TEST SAMPLES

THE WORST CASE SCENARIO (WCS) NIS WITH ALL TEST SAMPLES

b1=

b₀=

 $R^2 =$

n

y₀=

x_o=

s_{x0}=

 $(s_{x0}/x_0) \times 100=$

 $s_{CA}/(n_u-1)^{-2}=$

s_{x/y}=

s_{b1}=

s_{b0}=

 $3s_{x/v}/b_1 =$

 $10s_{x/y}/b_1 =$

x_i(min)

max)

THE VALUES DISPLAYED IN THE GREY SHADED AREA ARE FROM

 $f_x = CB55$ H11

C

Standard or Calibration Curve

Replicates of Test Sample

SD of

SD d

LOD, Low

LOQ. Lower Lim

AVG Response of Test Samples

Predicted Unknown

SD of Test Sample

CV

SEM of Test Sample

SD about Regression

Minimu

Maximum Test Samp

Calculated from Simulation

Difference Beetween

ration Slope

ntercept

tection

cation

Copy

Format

1

2

Δ 6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

- •

എ എ എ **∓**

The "Power Analysis" spreadsheet uses Graybill's Equation to illustrate the effects of using different numbers of replicates for each test sample

Norma

Normal 2

CCCC V 0.62 07Jan21

Conditional Format

 $\frac{1}{n} + \frac{1}{n} + \frac{(y_0 - \bar{y})^2}{(b_1)^2 \sum_{i=1}^n (x_i - \bar{x})^2}$

Sophistic Method

Lab Spreadsheet

Transformations

EV2 Mode

Intuitive Method

Numbe

😁 Merge & Center

н

Projected

Standard

Curve

31.68

19.38

462.76

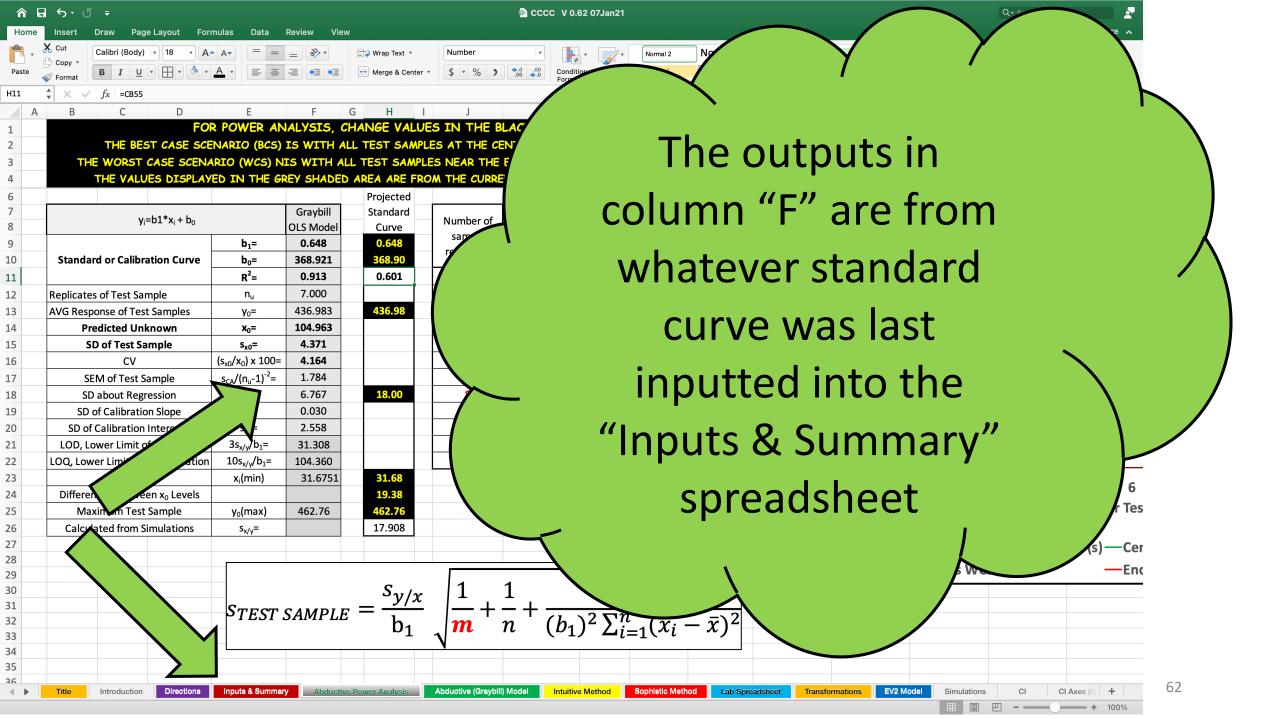
17.908

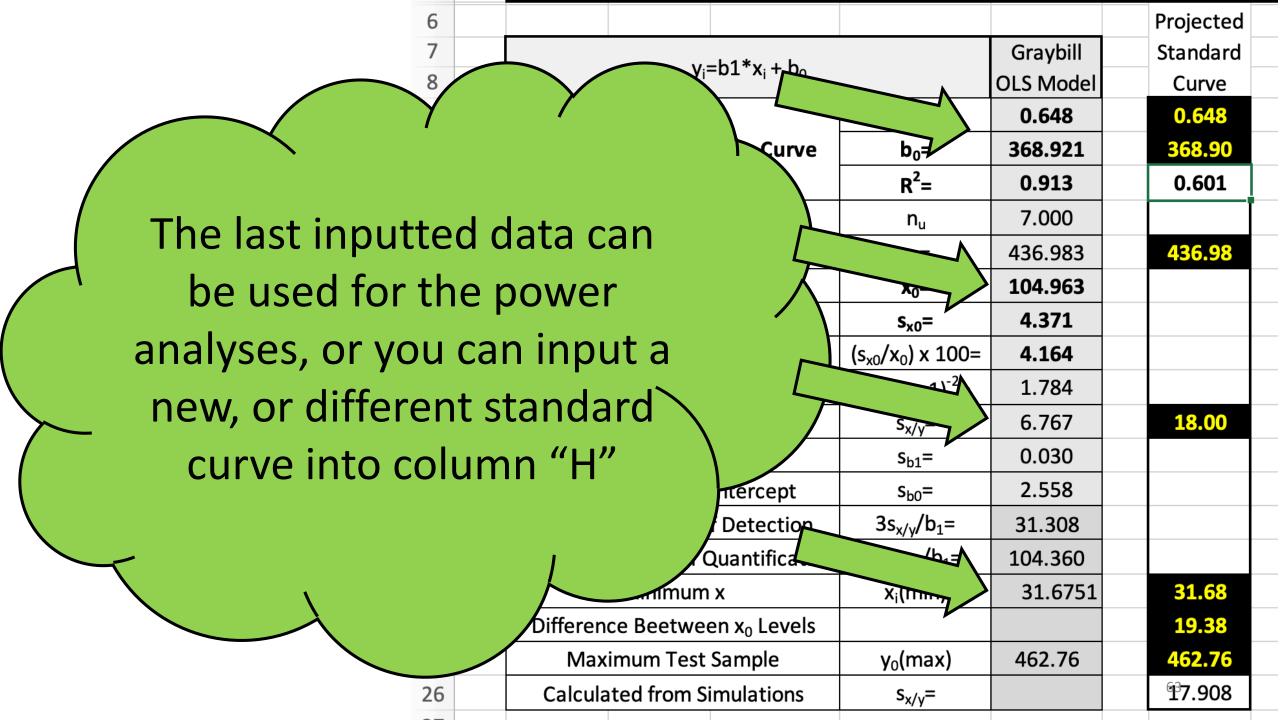
Abductive (Gravbill) Model

G

FOR POWER ANALYSIS, CHANGE VALUES IN T

S Standard Deviation (s) — Cer Results WCS SD (s)


61


· Tes

-Enc

100%

CI Axes (2)

			Projected	
y _i =b1*x _i + b ₀		Graybill OLS Model	Standard Curve	
	b ₁ =	0.648	0.648	
Standard or Calibration Curve	b ₀ =	368.921	368.90	The needed
	R ² =	0.913	0.601	
Replicates of Test Sample	n _u	7.000	Ĩ	information
AVG Response of Test Samples	y ₀ =	436.983	436.98	includes the
Predicted Unknown	x ₀ =	104.963		includes the
SD of Test Sample	s _{x0} =	4.371		standard curve
CV	(s _{x0} /x ₀) x 100=	4.164		itaalf information
SEM of Test Sample	$s_{CA}/(n_u-1)^{-2}=$	1.784		itself, information
SD about Regression	s _{x/y} =	6.767	18.00	about the x values
SD of Calibration Slope	s _{b1} =	0.030		
SD of Calibration Intercept	s _{b0} =	2.558		and SD of the
LOD, Lower Limit of Detection	3s _{x/y} /b ₁ =	31.308		regression
LOQ, Lower Limit of Quantification	10s _{x/y} /b ₁ =	104.360		
Minimum x	x _i (min)	31.6751	31.68	
Difference Beetween x ₀ Levels			19.38	
Maximum Test Sample	y _o (max)	462.76	462.76	
Calculated from Simulations	s _{x/y} =		17.908	64

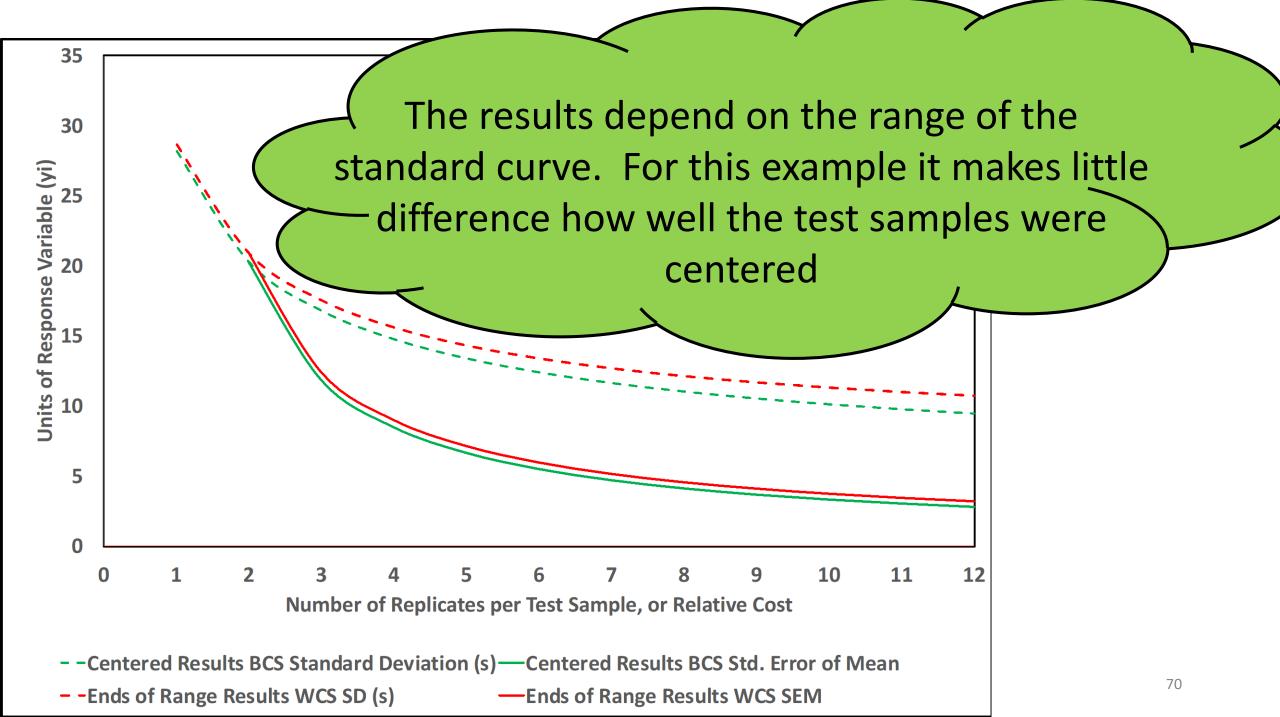
â		რ, დ	Ŧ								🗈 cccc v	0.62 07Jan2	21							Q~ s	earch Sheet		2
Hon	ne l	nsert l	Draw Page	e Layout	Formulas	Data Rev	view View															≗ + Share	~
	. .	Cut	Calibri (Body)	v 18 v	A^ A-	=	202 -	🖃 Wrap Text 🔻	Gen	eral			• Normal 2	2 Nor	mal Bad	Go	od			Auto	oSum 🔹 🗛 🥌		
Paste	-0	Сору т	BIU	▾▯▾◈	• A •	= = =		Merge & Cent	er • \$	• %) •	.0 .00 Cor	titional Forma	t Neutral	Calcul		ck Cell Exp	lanatory T	Insert	Delete Form	at 🔷	, Z∎ Sort 8	& Find &	
120		ormat							Ψ	/0 /	For	matting as Tab	le							Clea	ar▼ Filter	Select	
A30	•	× ×	fx			45										10			4.5				•
2		AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	<u> </u>
2	5	tandard			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	<u> </u>
3	1	Levels	X _i	avg y	У _і 202 стся	y _i 381.3281	Yi	y _i	Уi 270 522	Yi	Yi	Уi 206 5222	Уi Эрг 4399	y _i	Уi 254 5220	Yi	Yi	y _i	y _i	yi 271.0745	y _i	y _i	208
4		1						393.3495	379.5327			396.5233							384.7338				+
6	3	1	31.67507 31.67507		413.1073 393.1524	415.5756 409.5187		387.6532 334.9893	358.6643		417.2277	392.3224							376.1433 381.0836		377.7535		
8	5	1	_			372.4605		391.0647	391.755	_									403.3711				
9	6	1				394.7968		361.0583	388.8934			415_6712				386.172	000.0000				374.5832		<u> </u>
10	7	1			395.6116		389.1142	389.7111	377.4759				-04			Y							<u> </u>
11	8	1			405.3057				4531				7								363.8603		<u> </u>
12	9	2			388.3207	-													F	6547	401.0516		+
13	10	2			395.9685														-			407.3659	+
14	11	2		402.0075		4																382.5094	+
15	12	2		402.0075		1		~	~~	<u>~</u>		Ci	\sim 1		-00	FO						427.3826	
16	13	2		402.0075					しし	CC.	XIS	SII	IIU	Idl	.82	JU)					423.0198	
17	14	2	-	402.0075		4				, in the second s												385.6644	+
18	15	2	51.05779			•									_		_					364.0184	
19	16	2	51.05779					ra	na	om	ι ςτ	'an	d a	ra		rve	νς			/	5	408.5246	388
20	17	3	70.4405	414				IM	I I M	011			aa	· M	CG							411.5200	439
21	18	3	70.4405	414										C	~ ••••••••••••••••••••••••••••••••••••							423.3583	424
22	19	3	70.4405	414.5				ha	CO	d o	n t	'nΔ	\mathbf{c}	of	fiai	icn	tc	~			ļ	424.6473	431
23	20	3	70.4405	414.5759				Na	って	u U							LS				90	413.3848	426
24	21	3	70.4405	414.5759		_													\mathbf{N}		.3229	417.1830	410
25	22	3	70.4405	414.575								~		~ ~	c +	ha					422.9013	431.4231	420
26	23	3	70.4405	414.575					JU	t ar	10	dVe	512	ge	SL	ne				-20.1829	422.2786	402.9681	426
27	24	3	70.4405	414.5759				F						0					1127	424.2944	389.4089	396.1024	415
28	25	4	89.82322																		450.6676		
29	26	4		427.1443			-									1			14.4031		423.6284		
30	27	4			439.3448													55			409.3739		
31	28	4				438.6106									6	45	409 5790	436.9346	417.3300				
32 33	29 30	4				434.8560	457.391	414.07.50		455.1824									467.8484 400.4786				
34	31	4					443.6894		414.009	424.2969									410.4788				
35	32	4					453.4317			441.6672		381.0105	392.4780										
36	33	5					421.8156			442.2651													
27	24	Ę	109 2059	120 7177	120 7084	118 5593	436 6457	440 4438	477 2084	425 9777	112 6208	454 3350	120 2722	122 0180	401 9076	<u> 1177</u>	126 9577	407 2717	<u>115 1211</u>	160 3260	118 3151	171 2071	
•		Fitle	Introduction	Directions	s Inputs	& Summary	Abductive	Power Analysis	Abduct	ve (Graybill) Mc	Intu	itive Method	Sophistic	Method	Lab Spreadsh	neet Tran	stormations	EV2 Mode	Simulati	ions C		xes (2) +	1

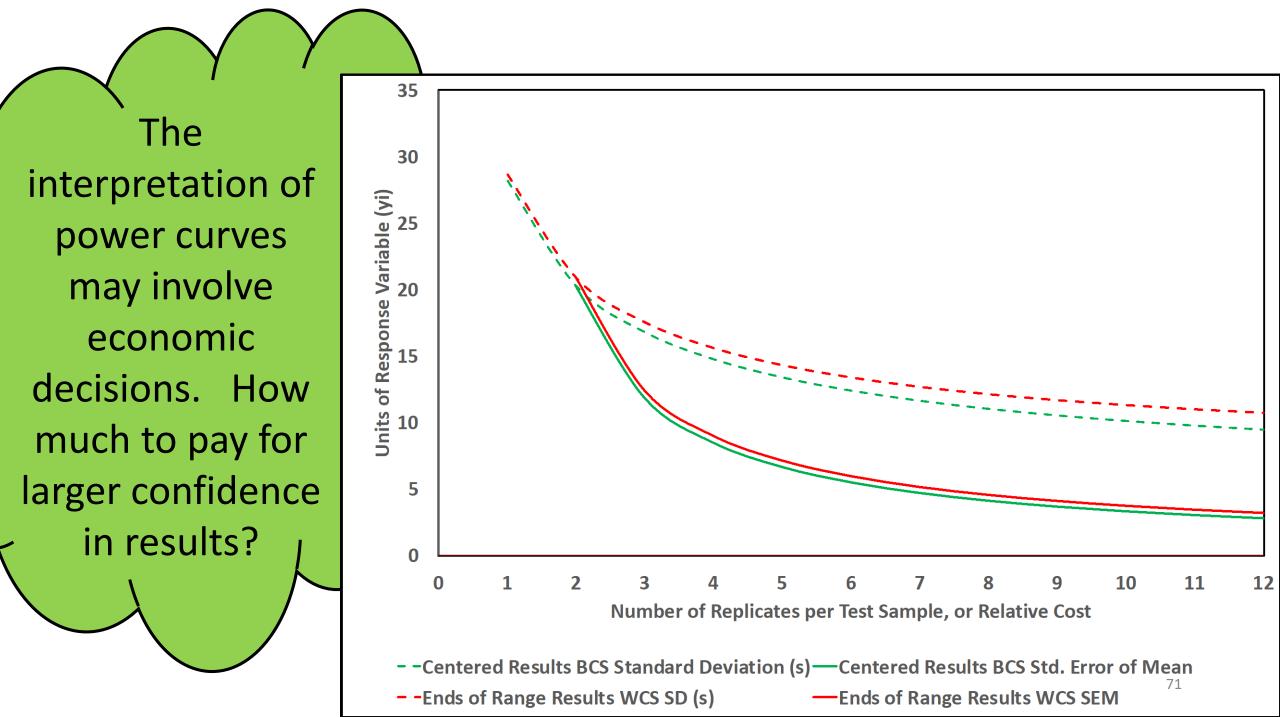
The standard deviation of the regression is very close to the standard deviation of the standard's means in the standard ~

curve.

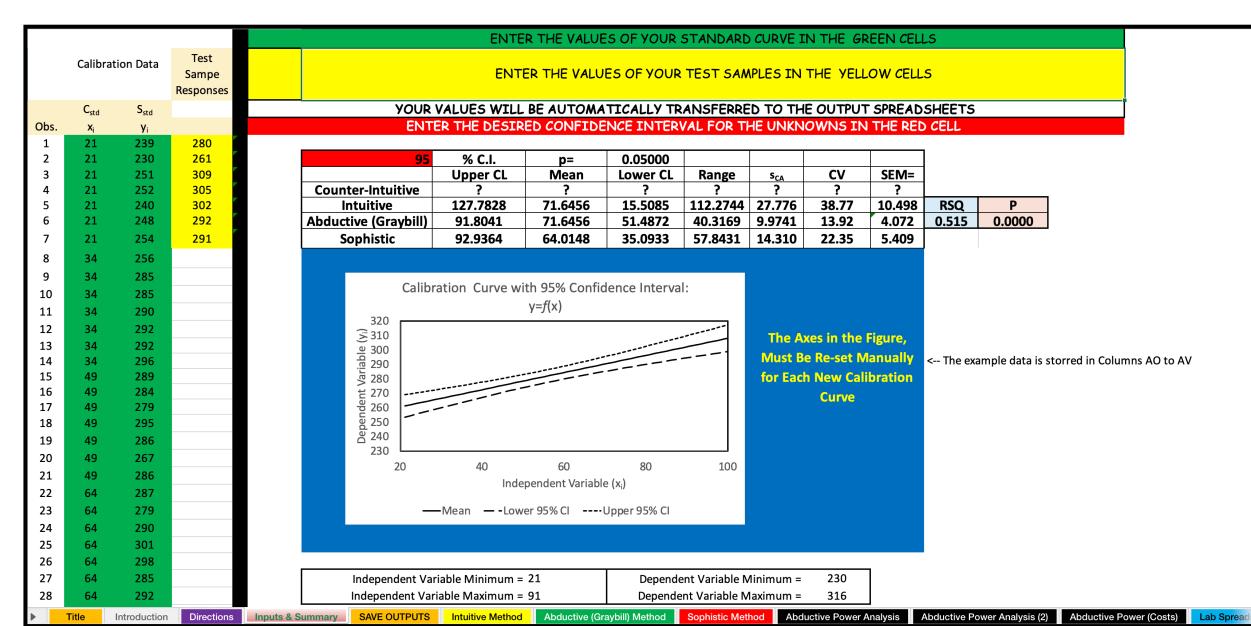
				_ /
SEIVE OF LEST Sample	s _{CA} /(n _u -1) =	1.704		
SD about Regression	s _{x/y} =	6.767	18.00	
SD of Calibration Slope	s _{b1} =	0.030		$\left \right\rangle$
SD of Calibration Intercept	s _{b0} =	2.558		
LOD, Lower Limit of Detection	3s _{x/y} /b ₁ =	31.308		
LOQ, Lower Limit of Quantification	10s _{x/y} /b ₁ =	104.360		
Minimum x	x _i (min)	31.6751	31.68	
Difference Beetween x ₀ Levels			19.38	
Maximum Test Sample	y _o (max)	462.76	462.76	
Calculated from Simulations	s _{x/y} =		17.908	

						\prec			·
				Th		lated star the stand			alculated of the
				re	gressio	ns. The v	alues i	n ad4 to	ca51 are
			>						the same
							inputs		
ag	e Layout	Formulas	Data Re	view Viev	/				
\checkmark	Ruler	Formula Bar	Zoom 100%	6					
\checkmark	Gridlines 🗸	Headings	🔍 Zoom to	100% Z	oom to Nev	$S_{CA}/(n_u-1) =$	1.704		
				Se	election Wind	s _{x/y} =	6.767	18.00	
RIV	11NV(RAND(),\$					s _{b1} =	0.030		_
	AA	AB		AD	AE	s _{b0} =	2.558		
						3s _{x/y} /b ₁ =	31.308		
	Standard				2	$10s_{x/y}/b_1 =$	104.360		
	Levels	x _i	avg y		Уi	x _i (min)	31.6751	31.68	
1	1	=NORMIN	V(RAND <mark>()</mark> ,	\$AC4 <mark>,\$H\$</mark> 1	8)			19.38	
	1	31.67507	389.4391	388.3777	388.0194	y ₀ (max)	462.76	462.76	67
2 3	1	31.67507	389.4391	390.4833	392.9804	s _{x/y} =		17.908	


Y


		-					
Number of	Centered Results		Ends of Range Results				
sample replicates	BCS Standard Deviation (s)	BCS Std. Error of Mean	WCS SD (s)	WCS SEM			
1	28.21		29.12				
2	20.26	20.26	21.50	21.50			
3	16.79	11.87	18.28	12.92			
4	14.76	8.52	16.43	9.48			
5	13.39	6.69	15.21	7.60			
6	12.39	5.54	14.34	6.41			
7	11.63	4.75	13.68	5.59			
8	11.02	4.16	13.17	4.98			
9	10.52	3.72	12.76	4.51			
10	10.11	3.37	12.42	4.14			
11	9.75	3.08	12.13	3.84			
12	9.45	2.85	11.89	3.59			
$\sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(y_0 - \bar{y})^2}{(b_1)^2 \sum_{i=1}^n (x_i - \bar{x})^2}}$							
•							

The "M" term of Graybill's Equation is then varied to estimate the SD & SEM of test samples in the center < and extremes of the standard (or calibration) curve


The SD & SEM of test samples in the center (Best-Case Scenario) and extremes (Worst-Case Scenario) of the calibration curve are calculated for different numbers of sample replicates, "M"

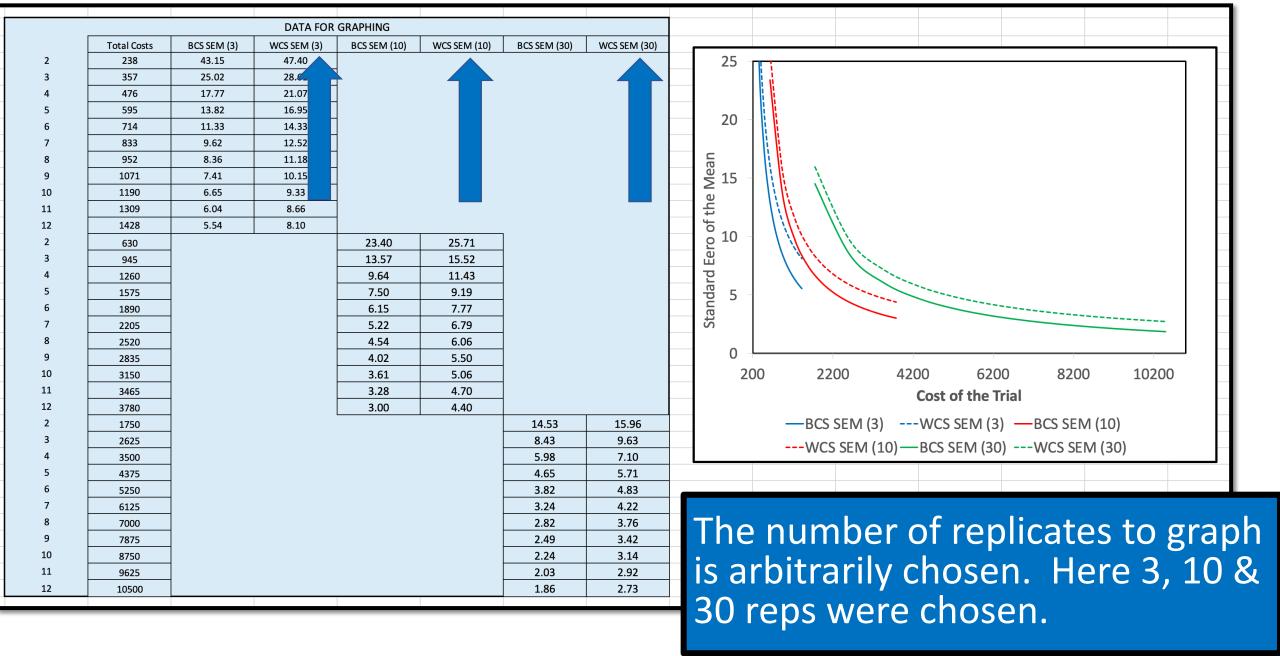
Number of	Centered Results		Ends of Range Results			
sample	BCS Standard Deviation (s)	BCS Std. Error of Mean	WCS SD (s)	WCS SEM		
1	28.21		29.12			
2	20.26	20.26	21.50	21.50		
3	16.79	11.87	18.28	12.92		
4	14.76	8.52	16.43	9.48		
5	13.39	6.69	15.21	7.60		
6	12.39	5.54	14.34	6.41		
7	11.63	4.75	13.68	5.59		
8	11.02	4.16	13.17	4.98		
9	10.52	3.72	12.76	4.51		
10	10.11	3.37	12.42	4.14		
11	9.75	3.08	12.13	3.84		
12	9.45	2.85	11.89	3.59		
$1 1 (y_0 - \bar{y})^2$						
$\sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(y_0 - \bar{y})^2}{(b_1)^2 \sum_{i=1}^n (x_i - \bar{x})^2}}$						
				J		

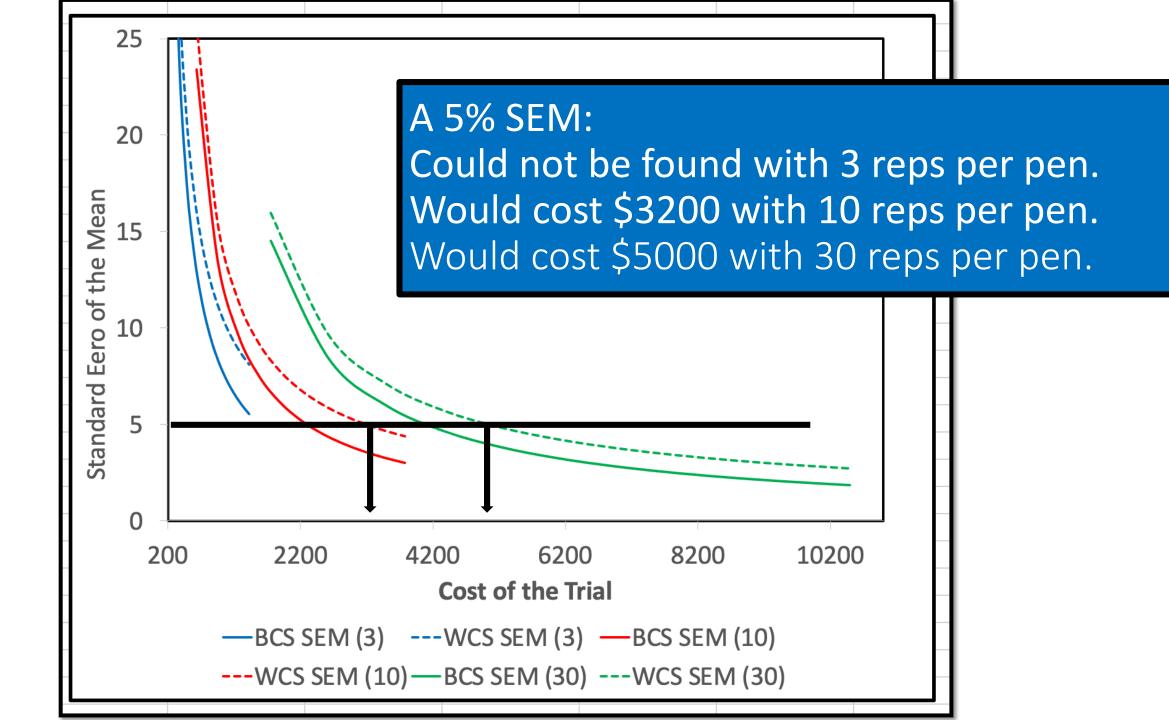
Including Costs In Power Analyses

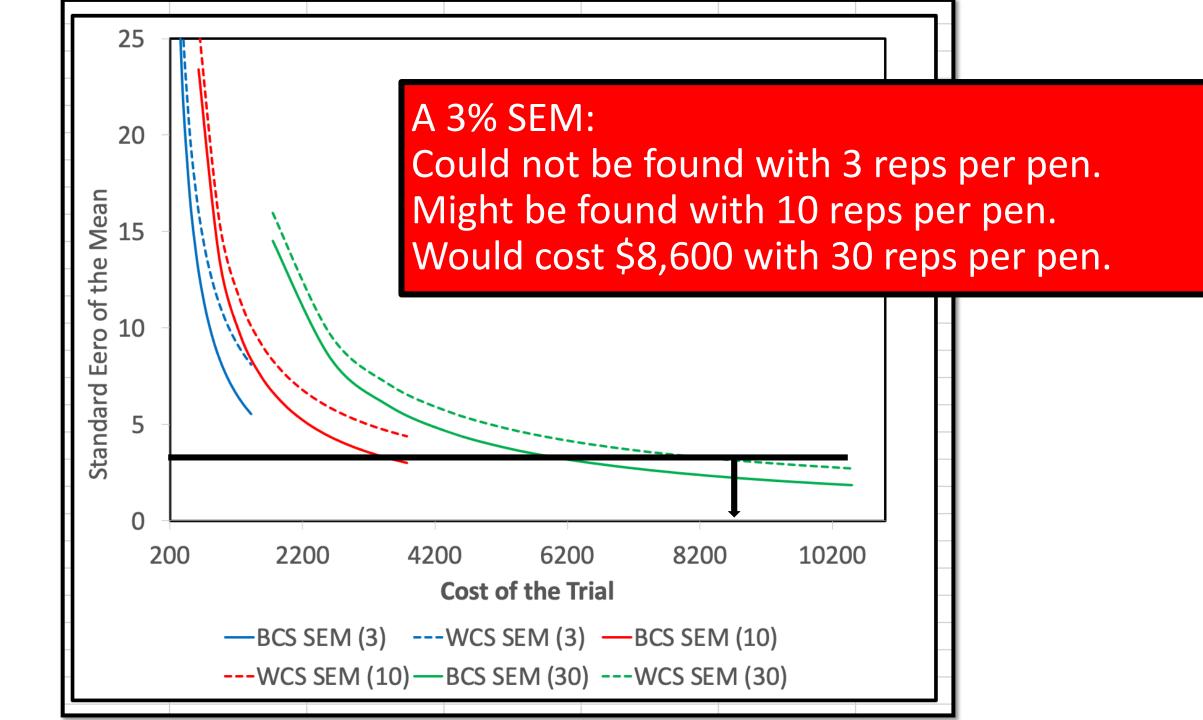
1												Observed SD with	7	Obs. per Rep. =	2
	OR POWER COST ANALYSIS,							UES AR	LINKED						
3 4	THROUG	H THE "ABD	JCTIVE PC	JWER A	NALYS	SIS (2) SPREA	DSHEET					Est. Variance of Reps.==>	1	Cost per Obs. ==>	\$
5												Est. Variance of Obs. ==>	55.99	Cost Based per	\$
6			Graybill		jected ndard		Centered R	oculto	Ends of Ba	ange Results		Obs. ==>		Rep ==>	_
8	y _i = b1 * x _i + b ₀		OLS Model		urve	Number of	Centered R	BCS Std.	Ends of Ra	ange Results		Ob comunities a second		Total Costs per	
9		b ₁ =	0.595		595	Sa	BCS Standard	Error of	WCS SD (s)	WCS SEM		Observations per Replicate	SD	Relicate	
10	Standard or Calibration Curve	b ₁ =	373.026		3.026	res	Deviation (s)	Mean	1103 30 (3)	WCS SEIVI				\$	
11		R ² =	0.515		51020	1	60.75		63.84			1	56.986	9.00	-
12	Replicates of Test Sample	m _u	7		1	2	43.15	43.15	47.40	47.40		2	40.588	13.00	-
12	AVG Response of Test Samples	y ₀ =	, 436.983		6.98	3	35.38	25.02	40.46	28.61		3	33.324	7.00	+
14	Predicted Unknown	y ₀ - x ₀ =	107.468			4	30.77	17.77	36.50	23.01		4	28.993		+
14	SD of Test Sample	s _{x0} =	14.961			5	27.64	13.82	33.90	16.95		5	26.038		+
16	CV	(s _{x0} /x ₀) x 100=	13.921			6	25.34	11.33		14.33		6	23.856	29.00	+
17	SEM of Test Sample	$(3_{x0}/x_0) \times 100^{-1}$	6.108			7	23.54	9.62	30.66	12.52		7	22.161	33.00	+
18	SD about Regression	$S_{CA}/(\Pi_u - 1) =$ $S_{x/y} =$	21.161	23	.324	8	22.13	8.36	29.58	11.18		8	20.794	37.00	+
19	SD of Calibration Slope	S _{x/y} =	0.091			9	20.95	7.41	28.70	10.15		9	19.662	41.00	-
20	SD of Calibration Intercept	$S_{b1} = S_{b0} =$	8.322			10	19.96	6.65	27.99	9.33		10	18.704	45.00	+
21	LOD, Lower Limit of Detection	3s _{b0} = 3s _{x/y} /b ₁ =	106.673			11	19.11	6.04	27.39	8.66		11	17.881	49.00	-
22	LOQ, Lower Limit of Quantification	$10s_{x/y}/b_1 =$	355.575		11 12		18.37	5.54	26.88	8.10		12	17.162	53.00	+
23	Minimum x	$x_i(min)$	31.675	31.68				0.01		5.10		13	16.528	57.00	+
24	Difference Beetween x ₀ Levels		51.575		9.38		ase Scenario				14	15.963	61.00	+	
25	Maximum Standard Response	y₀(max)	473.27		3.27			IN T	HIS MO	DDFL m			15.456	65.00	+
26	Calculated from Simulations	70(<compare cell<="" td="" to=""><td>H18</td><td></td><td></td><td></td><td colspan="2">15</td><td>15.456</td><td>69.00</td><td>+</td></compare>	H18				15		15.456	69.00	+
27	Calibration Curve Levels of x	-x/γ-	6					AND	n ARE L	<u>INKED,</u>		10	14.579	73.00	+
28	Calibration Curve Reps/Level of x		7					n IS	EQUAL	TO m		18	14.196	77.00	-
29	Total n for Calibration Curve		42									19	13.844	81.00	-
30												l		85.00	1
31														89.00	
32				\sim		\sim		$\neg +$	\sim	fre		\sim		93.00	_
33	The \					$S \ Lc$			\mathbf{E}				-	97.00	_
34 35												•••	-	101.00	-
36									•				-	105.00	-
37	tho S	1)	ho			tha	rog	ro	CCI	on	2	nd	-	113.00	-
38	the S	Da	$\overline{\mathbf{D}}$				TER	TC	221		Q			117.00	1
39							0							121.00	1
40	•			•										125.00	
41		mn	$\square \square$		76									129.00	
42	its sa			51										133.00	4
43		•											-	137.00	
44														141.00	

			Observed SD with	7	Obs. per Rep. =	21.1
			Est. Variance of Reps.==>	1	Cost per Obs. ==>	s
			Est. Variance of Obs. ==>	55.99	Cost Base	\$
	nds of Ra	ange Result	Observations per Replicate	SD	cal Costs per Relicate	
					\$	
	53.84		1	56.986	9.00	
	17.40	47.40	2	40.588	13.00	
	10.46	28.61	3	33.324	17.00	
	86.50	21.07	4	28.993	21.00	
	3.90	16.95	5	26.038	25.00	<u> </u>
	82.05	14.33	6	23.856	29.00	L
	80.66	12.52	7	22.161	33.00	
	1 0 E0	11.10	8	20.794	37.00	-
The variance is calculated from the obse	arva	12 hc	9	19.662	41.00	
			10	18.704	45.00	-
with its dogroos of freedom			11	17.881 17.162	49.00 53.00	
with its degrees of freedom.			12	16.528	57.00	-
			13	15.963	61.00	-
Then the SD's for different numbers of			15	15.456	65.00	+
			16	14.997	69.00	1
observations per replicate are calculate	d fr	om	17	14.579	73.00	1
			18	14.196	77.00	
the variance			19	13.844	81.00	
			20	13.519	85.00	
			21	13.217 12.936	89.00 93.00	
			22	12.936	97.00	
			24	12.428	101.00	
			25	12.197	105.00	
			26	11.980	109.00	
			27	11.775	113.00	_
			28 29	11.580 11.396	117.00	-
			30	11.222	121.00	1
			31	11.055	129.00	
			32	10.897	133.00	
			33	10.746	137.00	
			34	10.602	141.00	1

Observed SD with	7	Obs. per Rep. =	21.16			Ν
				Exam	nples	
Est. Variance of Reps.==>	1	Cost per Obs. ==>	\$ 4.00	\$/assay, \$/chick,	\$Feed/chick, etc.	
Est. Varian		Cost Based per Rep ==>	\$ 5.0	Housing costs /Pe Labor, etc.)	n, Weighing	
Observations per Replicate	SD	Total Costs per Relicate		Number of Obs. per Rep. ==>	3	
		\$		Cost per rep. ===>	17	
1	56.986	9.00		No. of reps.	Total Costs	
2	40.588	13.00		1	119	
3	33.324	17.00		2	238	
4	28.993	21.00			357	
5	26.038	25.00		4	476	
6	23.856	29.00		5	595	
7	22.161	33.00		6	714	
8	20.794	37.00	_	7	833	
9	19.662	41.00				
10	18.704	45.00				
11	17.881	49.00				
12	17.162	53.00				
13	16.528	57.00		The		sts pe
14	15.963	61.00				21206
15	15.456	65.00				
16	14.997	69.00				
17	14.579	73.00		00		ted fr
18	14.196	77.00				
19	13.844	81.00				
20	13.519	85.00				
21	13.217	89.00		nor	<u>oh</u>	corva
22	12.936 12.674	93.00 97.00		DEL		servat
23	12.674	101.00				
25	12.197	105.00				
26	11.980	109.00				
27	11.775	113.00				
28	11.580	117.00				
29	11.396	121.00		2	630	
30	11.222	125.00		3	945	
	11.055	129.00		4	1260	
31				_	4 5 5 5	
31 32 33	10.897 10.746	133.00 137.00		5	1575 1890	


The costs per replicate are calculated from inputted costs per observation and replicate


	H	Jx	К	L	M	Ν	0 P	Q	R	S	Т	U	V	W	Х		Y	Z	AA	AB
1							Observed S	D with 7	Obs. per Rep. =	21.16			No. of Standard	6		25 📊				
2 6	REEN CE	LLS ONLY. AL	L OTHER VAL	UES AR	E LINKED						Exar	nples	levels	0						
3 📑	ANALYS	IS (2) SPREAU	DSHEET				Est. Varia Reps.=	L 1	Cost per Obs. ==>	>\$4.00	\$/assay, \$/chick,	\$Feed/chick, etc.	No. of Test Samples	1		20 -				
5 6	Projected						Est. Varia Obs. =	55.99	Cost Based per Rep ==>	\$ 5.00	Housing costs /Pe Labor, etc.)	en, Weighing		Observations per Rep. ==>						
7	Standard	Number of	Centered R	esults	Ends of Ra	nge Results									ean					
8 9	Curve 0.595	sample	BCS Standard	BCS Std. Error of	WCS SD (s)	WCS SEM	Observatio Replica	' SD	Total Costs per Relicate		Number of Obs. per Rep. ==>	3			<	15 -				
10	373.026	replicates	Deviation (s)	Mean Mean <th< td=""><td></td><td></td><td></td></th<>																
11	0.515	1	60.75																	
12		2	43.15															N.		
13	436.98	3	35.38															1.		
14		4	30.77																	
15		5	27.64	13.82				26.03	3 25.00		· · ·	476	17.77	21.07	anc	5 -				
16		6	25	11.33	32.05	14.33	6	23.85			5	595	13.82	16.95	St			-		
17			23.56	9.62	30.66	12.52	7	22.16			6	714	11.33	14.33						
18	33.324	8	22.13 20.95	8.36 7.41	29.58 28.70	11.18 10.15	8	20.79			7	833	9.62	12.52		0	T		T	1
19		9	9	8.36	11.18		200	2200	4	200 63	200 8200									
20		10	19.96	6.65	27.99	9.33	10	18.70		_	9	1071	7.41	10.15					Cost of the	Trial
21		11	19.11	6.04	27.39	8.66	11	17.88	49.00		10	1190	6.65	9.33						
22		12	18.37															И(3) -	WCS SEM	(3) — BCS SEN
23	31.68	BCS= Best-Case																M (10)-	BCS SEM (30)WCS SE
24	19.38	WCS= Worst-Ca								_	-	-	_			_				
25	473.27				ralci	ulate	a cos	ts ar	nd est	im	nto St	and	ard F	rrors	of	the				
26 27	38.108 <	Compare to Cell	H18			ulau		ls ai	iu est		ale J	lando		11013			-	SEM (30)	WCS SEM (30)	
28								L		L L				_ L				5EIVI (50)		
29				vie	anc	DT TN	ie tes	t sa	mples	S TO	r anv	num	iper (OT						
30																				
31				hc	orv	atio	ns nc	r ro	plicate		onv t	ha a	ctim	atad		an				
32				702		auoi			Jilau	ヒ, し	υργι		SUIII	aleu	500	ann	u			
33 34											10									
35				COS	ts d	er re	eplica	nte t	o cell	SH	18 ar	nd U i								
36							•													
37				Int	or t	hon	umh	or o	fobse		otion	c nor	ropl	icato	in					
38					<u>er l</u>	пеп	<u>um</u>		L ODZE			sper	тері	<u>icate</u>		<u>re</u>	109			
39																				
40																				
41																				
43							33	10.05	i 137.00		6	1890	-		6.15		7.77			
44							34	10.60			7	2205			5.22		6.79			


L12 to L 22 and N 12 to N22 are transferred to cells V13 to W23 to facilitate copying for graphing

					Est. Variance of Obs. ==>	55.99	Cost Based per Rep ==>	\$ 5.	.00	Housing costs /Pe Labor, etc.)	n, Weighing		Observations per Rep. ==>		20 -
Number of	Centered R	esults	Ends of Ra	inge Results											an
Number of sample	BCS Standard	BCS Std. Error of	WCS SD (s)	WCS SEM	Observations per Replicate	SD	Total Costs per Relicate			Number of Obs. per Rep. ==>	3				ອັ 15 ອ
replicates	Deviation (s)	Mean					\$			Cost per rep. ===>	17				the :
1	60.75		63.84		1	56.986	9.00			No. of reps.	Total Costs	BCS SEM	WCS SEM		б о 10
2	43.15	43.15	47.40	47.40	2	40.588	13.00			1	119				0 10
3	35.38	25.02	40 46	28.61	3	22 224	17.00			2	238	43.15	47.40	Chart	
4	30.77	17.77	36.50	21.07	4	28.993	21.00			3	357	25.02	28.61		ard
5	27.64	13.82	33.90	16.95	5	26.038	25.00			4	476	17.77	21.07		pu 5
6	25.34	11.33	32.05	14.33	6	23.856	29.00			5	595	13.82	16.95		Stan
7	23.56	9.62	30.66	12.52	7	22.161	33.00			6	714	11.33	14.33		
8	22.13	8.36	29.58	11.18	8	20.794	37.00			7	833	9.62	12.52		0
9	20.95	7.41	28.70	10.15	9	19.662	41.00			8	952	8.36	11.18		20
10	19.96	6.65	27.99	9.33	10	18.704	45.00			9	1071	7.41	10.15		
11	19.11	6.04	27.39	8.66	11	17.881	49.00			10	1190	6.65	9.33		
12	18.37	5.54	26.88	8.10	12	17.162	53.00			11	1309	6.04	8.66		
BCS= Best-Cas	e Scenario				13	16.528	57.00			12	1428	5.54	8.10		

	Number of Obs. per Rep. ==> Cost per rep. ===>	3				the Me		
	No. of reps.	Total Costs	BCS SEM	WCS SEM				
	1	119					rococc ic ror	opted 2 times for different
	2	238	43.15	47.40			i ocess is rep	peated 3 times for different
		357	25.02	28.61			-	
		476	17.77	21.07		numk	ers of reps /	' treatment.
	5	595	13.82	16.95				
	6	714	11.33	14.33		Tho r	aculte ara co	pied to cells U28 to AA60.
	7	833	9.62	12.52			esuits are co	$\mathbf{p} = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$
	8	952	8.36	11.18		200	2200 7200 0200	
	9	1071	7.41	10.15			Cost of the Tri	
	10	1190	6.65	9.33			cost of the fil	
	11	1309	6.04	8.66		—В	CS SEM (3)WCS SEM (3)	
	12	1428	5.54	8.10			CS SEM (10) — BCS SEM (30)	
						//		
				DATA FOR	GRAPH	ING		
		Total Costs	BCS SEM (3)	WCS SEM (3)	BCS S	6EM (10) WCS SEM (10	BCS SEM (30) WCS SEM (30)	
	2	238	43.15	47.40				
	3	357	25.02	28.61				
	4	476	17.77	21.07				
	5	595	13.82	16.95	4			
	6	714	11.33	14.33	-			
	7	833	9.62	12.52	4			
	8	952	8.36	11.18	-			
	9 10	1071 1190	7.41 6.65	10.15 9.33	-			
	10	1309	6.04	8.66	-			
	12	1428	5.54	8.10	1			
	2	630			2	3.40 25.71		
	3	945	1		1	3.57 15.52		
	4	1260]		9	9.64 11.43		
	5	1575]		7	7.50 9.19		
	6	1890			6	5.15 7.77		
	7	2205	_			5.22 6.79	_	
	8	2520	_			4.54 6.06	_	
	9	2835	_		<u> </u>	1.02 5.50	_	
	10	3150	-			3.61 5.06 3.28 4.70	-	
	11	3465	-		ł			
k Sumi	mary Intuitiv	ve Method	Abductive (Grayb	oill) Method	Sophist	ic Method Abductiv	e Power Analysis Abductive Power	

35																			
36																			
~ 7					1		1		1 1		İ			İ	1		1		
	Title	le Introduction Directions Inputs & Summary		SAVE OUTP	UTS	Intuitive Method	Abductiv	e (Graybill) Method	Soph	istic Method	Abductive	Power Analysis	Abducti	ve Power Ana	alysis (2)	Abductive Po	wer (Costs)	Lab	
																		─ - ─	

Anyone can modify & improve the Excel workbook. Here a spreadsheet called "SAVE OUTPUTS" was created.

T23																					
	A	В	С	D	E	F	G	Н		J	K L N		M	N	O P		Q	R	S		
1	x Variable Name	y Variable Name Intuitive Method Mean SEM				nod Linear Log10(x) LN(x) Sq Rt(x)		1/x	x²	1/x ²	Sq Rt(x+.5)	Ln(x+1)	Cube Rt (x)	ln[x/(1-x)]	0.5In [(1+x)/(1- x)]	x+x ²			
2			Mean	SEM	Mean	SEM		Coefficients of Determination = R ²													
3 <mark> </mark>	Intake	Response	71.645641	10.4983036	71.64564	4.0719174	0.5152	0.6124	0.6124	0.5647	0.6861	0.4254	0.7213	0.5641	0.6100	0.5810	0.6085	0.5148	0.4263		
4																					
5																					
6 [Diet Zn	Tibia Zn	71.645641	10.4983036	71.64564	4.0719174	0.515	0.612	0.612	0.565	0.686	0.425	0.721	0.564	0.610	0.581	0.609	0.515	0.426		
7																					
8																					
0																				▁	

Values from the "Inputs & Outputs" and "Transformations" Spreadsheets are written to the new spreadsheet. The results from Row 3 are from formulas. They can be copied and pasted special, values, to have a permanent record

Conclusions About Calibration Curves

- Practically everyone accepts the inverse prediction model because it is very intuitive
- Practically everyone misses the important point that y=f(x) does not necessarily give the same line as x= f(y).
 - Predicting x from the y=f(x) line gives an incorrect answer.
- When $r^2 > 0.95$ it doesn't matter much.
- When r² < 0.95 there may be distinct advantages to using an abductive method.
 - The ci of test samples is better approximated.
 - Ci's of samples near the center of the standard curve won't be overestimated.
 - Ci's of samples near the extremes of the standard curve won't be underestimated.

General Guidelines for Calibration Curves

- 1. Use at least 6 levels of x for your calibration curve
- 2. Center the calibration curve on values you expect from your test samples
- 3. For best results, try and use only a linear range of the response
- 4. Use the Abductive Method Equation to determine the amount of resources you can use for your:
 - 1. Calibration Curve
 - 2. Number of replicates for the unknown
 - 3. Economical improvement in Cl
- 5. Use the Abductive Method Equation to determine the CI of the estimated content of the samples
- 6. Determine if a transformation will be helpful